Skip to main content

Statistically-Hiding Quantum Bit Commitment from Approximable-Preimage-Size Quantum One-Way Function

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5906))

Included in the following conference series:

Abstract

We provide a quantum bit commitment scheme which has statistically-hiding and computationally-binding properties from any approximable-preimage-size quantum one-way function, which is a generalization of perfectly-hiding quantum bit commitment scheme based on quantum one-way permutation due to Dumais, Mayers and Salvail. In the classical case, statistically-hiding bit commitment scheme is constructible from any one-way function. However, it is known that the round complexity of the classical statistically-hiding bit commitment scheme is Ω(n/logn) for the security parameter n. Our quantum scheme as well as the Dumais-Mayers-Salvail scheme is non-interactive, which is advantageous over the classical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, D., Ta-Shma, A., Vazirani, U.V., Yao, A.C.-C.: Quantum bit escrow. In: Proc. 32nd ACM Symp. Theory of Computing, pp. 705–714 (2000)

    Google Scholar 

  2. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

    Article  MATH  Google Scholar 

  3. Buhrman, H., Christandl, M., Hayden, P., Lo, H.-K., Wehner, S.: Possibility, impossibility and cheat-sensitivity of quantum bit string commitment. Phys. Rev. A 78(32), 022316 (2008)

    Article  Google Scholar 

  4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comp. Syst. Sci. 18(2), 143–154 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haitner, I., Horvitz, O., Katz, J., Koo, C.-Y., Morselli, R., Shaltiel, R.: Reducing complexity assumptions for statistically-hiding commitment. J. Cryptol. 22(3), 283–310 (2009); Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494, pp. 58–77. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Haitner, I., Reingold, O.: A new interactive hashing theorem. In: Proc. 22nd IEEE Conf. Computational Complexity, pp. 319–332 (2007)

    Google Scholar 

  10. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way function. In: Proc. 39th ACM Symp. Theory of Computing, pp. 1–10 (2007)

    Google Scholar 

  11. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive protocols — A tight lower bound on the round complexity of statistically-hiding commitments. In: Proc. 48th IEEE Symp. Foundations of Computer Sciences, pp. 669–679 (2007)

    Google Scholar 

  12. Hardy, L., Kent, A.: Cheat sensitive quantum bit commitment. Phys. Rev. Lett. 92(15), 157901 (2004)

    Article  Google Scholar 

  13. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kent, A.: Quantum bit string commitment. Phys. Rev. Lett. 90(23), 237901 (2003)

    Article  Google Scholar 

  15. Koshiba, T., Seri, Y.: Round-efficient one-way permutation based perfectly concealing bit commitment scheme, Electronic Colloquium on Computational Complexity, TR06-093 (2006)

    Google Scholar 

  16. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78(17), 3410–3413 (1997)

    Article  Google Scholar 

  17. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414–3417 (1997)

    Article  Google Scholar 

  18. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)

    Article  MATH  Google Scholar 

  20. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. J. Cryptol. 11(2), 87–108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nguyen, M.-H., Ong, S.-J., Vadhan, S.P.: Statistical zero-knowledge arguments for NP from any one-way function. In: Proc. 47th IEEE Symp. Foundations of Computer Science, pp. 3–14 (2006)

    Google Scholar 

  22. Renner, R.: Security of quantum key distribution, Ph.D. Thesis, ETH Zurich (2005), quant-ph/0512258

    Google Scholar 

  23. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Proc. 22nd ACM Symp. Theory of Computing, pp. 387–394 (1990)

    Google Scholar 

  24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koshiba, T., Odaira, T. (2009). Statistically-Hiding Quantum Bit Commitment from Approximable-Preimage-Size Quantum One-Way Function. In: Childs, A., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2009. Lecture Notes in Computer Science, vol 5906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10698-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10698-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10697-2

  • Online ISBN: 978-3-642-10698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics