Skip to main content

Calcium Isotopes as Tracers of Biogeochemical Processes

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

The prevalence of calcium as a major cation in surface and oceanic environments, the necessity of calcium in the functioning of living cells and bone growth, and the large spread in mass between calcium isotopes all suggest that calcium isotope biogeochemistry can be an important avenue of insight into past and present biogeochemical cycling processes. In the following chapter, we review the main areas of research where Ca isotope studies have been pursued and detail recent research results in biogeochemical applications. In marine environments, biogenic fractionation of Ca isotopes during biomineralization produces predictable offsets in some organisms, which facilitate the reconstruction of seawater δ44/40Ca over geologic timescales. In terrestrial studies, observed Ca isotope fractionation between soil and various components of vegetation enables the construction of a local Ca budget and provides a partial explanation for the scale of Ca isotopic variability within a single watershed. The research reviewed in this chapter provides a foundation for future investigations into the macro- and microscopic processes and biochemical pathways dictating the distribution of this essential nutrient using stable Ca isotope ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allemand D, Ferrier-Pagès C, Furla P et al (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palevol 3:453–467

    Google Scholar 

  • Amini M, Eisenhauer A, Böhm F et al (2008) Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45′N). Geochim Cosmochim Acta 72:4107–4122

    Google Scholar 

  • Amtmann A, Blatt M (2009) Regulation of macronutrient transport. New Phytol 181:35–52

    Google Scholar 

  • Baum BR (1978) The genus Tamarix. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Bentov S, Erez J (2006) Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective. Geochem Geosphys Geosyst 7:1–11

    Google Scholar 

  • Berner R, Lasaga A, Garrels R (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Google Scholar 

  • Böhm F, Eisenhauer A, Heuser A, Kiessling W, Wallmann K (2005) Calcium isotope fractionation during dolomitization. GeoErlangen, Schriften Deutsch Ges Geowissensch 39.

    Google Scholar 

  • Böhm F, Gussone N, Eisenhauer A et al (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462

    Google Scholar 

  • Broecker W, Peng T (1982) Tracers in the sea. Eldigo Press, New York

    Google Scholar 

  • Bullen T, Walczyk T (2009) Environmental and biomedical applications of natural metal stable isotope variations. Elements 5:381–385

    Google Scholar 

  • Carpenter S, Lohmann K (1992) Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochim Cosmochim Acta 56:1837–1849

    Google Scholar 

  • Cenki-Tok B, Chabaux F, Lemarchand D et al (2009) The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case). Geochim Cosmochim Acta 73:2215–2228

    Google Scholar 

  • Chang V, Williams R, Makishima A et al (2004) Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun 323:79–85

    Google Scholar 

  • Chu N, Henderson G, Belshaw N et al (2006) Establishing the potential of Ca isotopes as proxy for consumption of dairy products. Appl Geochem 21:1656–1667

    Google Scholar 

  • Clementz M, Holden P, Koch P (2003) Are calcium isotopes a reliable monitor of trophic level in marine settings? Int J Osteoarchaeol 13:29–36

    Google Scholar 

  • Clode P, Marshall A (2003) Calcium associated with fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220:153–161

    Google Scholar 

  • Cuif J, Dauphin Y (2005) The environment recording unit in coral skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibers. Biogeoscience 2:61–73

    Google Scholar 

  • De La Rocha C, DePaolo D (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–1178

    Google Scholar 

  • DePaolo D (2004) Calcium isotope variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. In: Johnson C, Beard B, Albarede F (eds) Reviews in mineralogy and geochemistry: geochemistry of the non-traditional stable isotopes, 52. Mineralogical Society of America, Washington

    Google Scholar 

  • DePaolo D (2011) Theory of isotopic and trace element fractionation during precipitation of carbonate minerals from aqueous solutions: surface reaction control limit. Geochim Cosmochim Acta 75:1039–1056

    Google Scholar 

  • Eisenhauer A, Nägler T, Stille P et al (2004) Proposal for international agreement on Ca notation resulting from discussions at workshops on stable isotope measurements held in Davos (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). Geostand Geoanal Res 28:149–151

    Google Scholar 

  • Eisenhauer A, Kisakürek B, Böhm F (2009) Marine calcification: an alkali earth metal isotope perspective. Elements 5:365–368

    Google Scholar 

  • Erez J (1982) Calcification rates, photosynthesis and light in planktonic foraminifera. In: Westbroek P, De Jong E (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht

    Google Scholar 

  • Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Dove P, De Yoreo J, Weiner S (eds) Reviews in mineralogy and geochemistry: biomineralization, vol 54. Mineralogical Society of America, Washington

    Google Scholar 

  • Ewing S, Yang W, DePaolo D et al (2008) Non-biological fractionation of stable Ca isotopes in soils of the Atacama desert, Chile. Geochim Cosmochim Acta 72:1096–1110

    Google Scholar 

  • Fantle M (2010) Evaluating the Ca isotope proxy. Am J Sci 310:194–230

    Google Scholar 

  • Fantle M, DePaolo D (2005) Variations in the marine Ca cycle over the past 20 millino years. Earth Planet Sci Lett 237:102–117

    Google Scholar 

  • Fantle M, DePaolo D (2007) Ca isotopes in carbonate sediment and pore fluid from ODP site 807A: the Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim Cosmochim Acta 71:2524–2546

    Google Scholar 

  • Fantle M, Bullen T (2009) Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry. Chem Geol 258:50–64

    Google Scholar 

  • Farkaš J, Böhm F, Wallmann K et al (2007) Calcium isotope record of Phanerozoic oceans: implications for chemical evolution of seawater and its causative mechanisms. Geochim Cosmochim Acta 71:5117–5134

    Google Scholar 

  • Fietzke J, Eisenhauer A, Gussone N et al (2004) Direct measurement of 44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique. Chem Geol 206:11–20

    Google Scholar 

  • Fletcher I, Maggi A, Rosman K et al (1997) Isotopic abundance measurements of K and Ca using a wide-dispersion multi-collector mass spectrometer and low-fractionation isonisation techniques. Int J Mass Spectrom Ion Process 163:1–17

    Google Scholar 

  • Griffith E, Paytan A, Caldeira K et al (2008a) A dynamic marine calcium cycle during the past 28 million years. Science 322:1671–1674

    Google Scholar 

  • Griffith E, Paytan A, Kozdon R et al (2008b) Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet Sci Lett 268:124–136

    Google Scholar 

  • Gussone N, Eisenhauer A, Heuser A et al (2003) Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim Cosmochim Acta 67:1375–1382

    Google Scholar 

  • Gussone N, Eisenhauer A, Tiedemann R et al (2004) δ44Ca, δ18O and Mg/Ca reveal Caribbean Sea surface temperature and salinity fluctuations during the pliocene closure of the Central-American gateway. Earth Planet Sci Lett 227:201–214

    Google Scholar 

  • Gussone N, Böhm F, Eisenhauer A et al (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69:4485–4494

    Google Scholar 

  • Gussone N, Langer G, Thoms S et al (2006) Cellular calcium pathways and isotope fractionation in Emiliania huxleyi. Geology 34:625–628

    Google Scholar 

  • Gussone N, Hönisch B, Heuser A et al (2009) A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers. Geochim Cosmochim Acta 73:7241–7255

    Google Scholar 

  • Gussone M, Zonneveld K, Kuhnert H (2010) Minor element and Ca isotope composition of calcareous dinoflagellate cysts of cultured Thoracosphaera heimii. Earth Planet Sci Lett 289:180–188

    Google Scholar 

  • Halicz L, Galy A, Belshaw N et al (1999) High-precision measurement of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). J Anal At Spectrom 14:1835–1838

    Google Scholar 

  • Heuser A, Eisenhauer A, Gussone N et al (2002) Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique. Int J Mass Spec 220:385–397

    Google Scholar 

  • Heuser A, Eisenhauer A (2008) The calcium isotope composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostand Newsl J Geostand Geoanal 32:311–315

    Google Scholar 

  • Heuser A, Eisenhauer A (2010) A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone 45:889–896

    Google Scholar 

  • Heuser A, Eisenhauer A, Böhm F et al (2005) Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography 20:1–13

    Google Scholar 

  • Hippler D, Schmidtt A, Gussone N et al (2003) Calcium isotopic composition of various reference materials and seawater. Geostand Newsl J Geostand Geoanal 27:13–19

    Google Scholar 

  • Hippler D, Eisenhauer A, Nägler T (2006) Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140ka. Geochim Cosmochim Acta 70(90):100

    Google Scholar 

  • Hippler D, Kozdon R, Darling K et al (2007) Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.). Biogeosci Discuss 4:3301–3330

    Google Scholar 

  • Hippler D, Kozdon R, Darling K et al (2009) Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.). Biogeosci Discuss 4:3301–3330

    Google Scholar 

  • Hirata T, Tanoshima M, Suga A et al (2008) Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry. Anal Sci 24:1501–1507

    Google Scholar 

  • Holbrèque F, Meibom A, Cuif J-P et al (2009) Strontium-86 labeling experiments show spatially heterogeneous skeletal formation in the scleractinian coral Porites porites. Geophys Res Lett 36:L04604

    Google Scholar 

  • Holcomb M, Cohen A, Gabitov R et al (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179

    Google Scholar 

  • Holmden C (2005) Measurement of δ44Ca using a 42Ca-43Ca double-spike TIMS technique: summary of investigations. In: Saskachewan Geological Survey, Sask Industry Resources, Misc Rep 1:A-4

    Google Scholar 

  • Holmden C (2009) Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: implications for subsurface dolomitization and local Ca cycling. Chem Geol 268:180–188

    Google Scholar 

  • Holmden C, Bélanger N (2010) Ca isotope cycling in a forested ecosystem. Geochim Cosmochim Acta 74:995–1015

    Google Scholar 

  • Horwitz E, McAlister D, Bond A et al (2005) Novel extraction of chromatographic resins based on Tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exch 23:319–344

    Google Scholar 

  • Huang S, Farkaš J, Jacobsen S (2010) Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett 292:337–344

    Google Scholar 

  • Kasemann S, Hawkesworth C, Pravec A et al (2005) Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet Sci Lett 231:73–86

    Google Scholar 

  • Kasemann S, Schmidt D, Pearson P et al (2008) Biological and ecological insights into Ca isotopes in planktic foraminifers as a paleotemperature proxy. Earth Planet Sci Lett 271:292–302

    Google Scholar 

  • Kisakürek B, Eisenhauer A, Böhm F et al (2008) Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett 273:260–269

    Google Scholar 

  • Komiya T, Suga A, Ohno T et al (2008) Ca isotopic compositions of dolomite, phosphorite and the oldest animal embryo fossils from the Neoproterozoic in Weng’an. S China Gondwana Res 14:209–218

    Google Scholar 

  • Lasaga A, Berner R, Garrels R (1985) An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. In: Sundquist E, Broecker W (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. American Geophysical Union, Washington

    Google Scholar 

  • Lemarchand D, Wasserburg G, Papanastassiou D (2004) Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim Cosmochim Acta 68:4665–4678

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marriott C, Henderson G, Belshaw N et al (2004) Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624

    Google Scholar 

  • Millero F (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677

    Google Scholar 

  • Nägler T, Eisenhauer A, Müller A et al (2000) δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem Geophys Geosyst 1:2000GC000091

    Google Scholar 

  • Page B, Bullen T, Mitchell M (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 88:1–13

    Google Scholar 

  • Payne J, Turchyn A, Paytan A et al (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci USA 107:8543–8548

    Google Scholar 

  • Perakis S, Maguire D, Bullen T et al (2006) Coupled nitrogen and calcium cycles in forests of the Oregon coast range. Ecosystems 9:63–74

    Google Scholar 

  • Reynard L, Henderson G, Hedges R (2010) Calcium isotope ratios in animal and human bone. Geochim Cosmochim Acta 74:3735–3750

    Google Scholar 

  • Richter F, Davis A, DePaolo D (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Google Scholar 

  • Robinson T (1965) Geological Survey Professional Paper 491-A: introduction, spread and areal extent of saltcedar (Tamarix) in the Western States. United States Government Printing Office, Washington

    Google Scholar 

  • Rollion-Bard C, Vigier N, Spezzaferri S (2007) In situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera. Chem Geol 244:679–690

    Google Scholar 

  • Rudge J, Reynolds B, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431

    Google Scholar 

  • Russell W, Papanastassiou D, Tombrello T (1978) Ca isotope fractionaion on the Earth and other solar system materials. Geochim Cosmochim Acta 42:1075–1090

    Google Scholar 

  • Schmitt A, Stille P (2005) The source of calcium in wet atmospheric deposits: Ca-Sr isotope evidence. Geochim Cosmochim Acta 69:3463–3468

    Google Scholar 

  • Schmitt A, Bracke G, Stille P et al (2001) The calcium isotope composition of modern seawater determined by thermal ionisation mass spectrometry. Geostand Newsl J Geostand Geoanal 25:267–275

    Google Scholar 

  • Schmitt A, Stille P, Vennemann T (2003a) Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: evidence from δ44Ca and δ18O values of Miocene phosphates. Geochim Cosmochim Acta 67:2607–2614

    Google Scholar 

  • Schmitt A, Chabaux F, Stille P (2003b) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet Sci Lett 213:503–518

    Google Scholar 

  • Sime N, De La Rocha C, Galy A (2005) Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera. Earth Planet Sci Lett 232:51–66

    Google Scholar 

  • Sime N, De La Rocha C, Tipper E et al (2007) Interpreting the Ca isotope record of marine biogenic carbonates. Geochim Cosmochim Acta 71:3979–3989

    Google Scholar 

  • Simon J, DePaolo D (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289:457–466

    Google Scholar 

  • Skulan J (1999) Calcium isotopes and the evolution of terrestrial reproduction in vertebrates. PhD Dissertation, University of California, Berkeley

    Google Scholar 

  • Skulan J, DePaolo D (1999) Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. Proc Natl Acad Sci USA 96:13709–13713

    Google Scholar 

  • Skulan J, DePaolo D, Owens T (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim Cosmochim Acta 61:2505–2510

    Google Scholar 

  • Skulan J, Bullen T, Anbar A et al (2007) Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clin Chem 53:1155–1158

    Google Scholar 

  • Soudry D, Segal I, Nathan Y et al (2004) 44Ca/42Ca and 143Nd/144Nd isotope variations in Cretaceous-Eocene Tethyan francolites and their bearings on phosphogenesis in the southern Tethys. Geology 32:389–392

    Google Scholar 

  • Steuber T, Buhl D (2006) Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Acta 70:5507–5521

    Google Scholar 

  • Tambutté E, Allemand D, Zoccola D et al (2007) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529

    Google Scholar 

  • Tang J, Dietzel M, Böhm F et al (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II. Ca isotopes. Geochim Cosmochim Acta 72:3733–3745

    Google Scholar 

  • Tipper E, Galy A, Bickle M (2006) Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle. Earth Planet Sci Lett 247:267–279

    Google Scholar 

  • von Blanckenburg F, Wiren N, Guelke M et al (2009) Fractionation of metal stable isotopes by higher plants. Elements 5:375–380

    Google Scholar 

  • White P, Broadley M (2003) Calcium in plants. Ann Bot 92:487–511

    Google Scholar 

  • Wiegand B, Chadwick O, Vitousek P et al (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32:L11404. doi:10.1029/2005GL022746

    Article  Google Scholar 

  • Yang W, Spencer R, Krouse H (1996) Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA. Geochim Cosmochim Acta 60:3015–3022

    Google Scholar 

  • Zhu P, Macdougall J (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Acta 62:1691–1698

    Google Scholar 

Download references

Acknowledgements

Research on the biogeochemistry of Ca isotopes by the authors has been supported by the National Science Foundation (NSF EAR-9526997; NSF EAR-9909639; NSF EAR-0838168), a NASA Astrobiology Institute grant (BioMARS; NAI02-0024-0006), and by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231 to the Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, L.C., Druhan, J.L., Yang, W., Brown, S.T., DePaolo, D.J. (2012). Calcium Isotopes as Tracers of Biogeochemical Processes. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_7

Download citation

Publish with us

Policies and ethics