Skip to main content

Path to Silicon Photonics Commercialization: The Foundry Model Discussion

  • Chapter
  • First Online:
Silicon Photonics III

Abstract

Silicon photonics will increasingly be adopted into commercial applications as the technology matures, and the demand for foundries is growing as companies search for photonic integrated chip (PIC) manufacturing support. The accessibility to foundries becomes a critical aspect for technology advancement and volume production. Foundry services for multi-project wafer (MPW) shuttles, customized process runs, and small volume production are discussed in this chapter. Results and challenges in setting up a CMOS manufacturing foundry line for silicon photonics research and development along with commercialization are also presented. The existing gap in the value chain presents an opportunity for foundries to be involved in a silicon photonics market that is primed for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molex Purchases Luxtera’s Silicon Photonics-based Active Optical Cable (AOC) Business. Jan 2011. http://www.molex.com/molex/common/staticLoader.jsp?fileName=/mx_upload/editorial/894/20110111_Luxtera_AOC.html&channel=News+In+Brief&channelId=-8

  2. Cisco Completes Acquisition of Lightwire. Mar 2012. http://www.cisco.com/web/about/ac49/ac0/ac1/ac259/lightwire.html

  3. Mellanox Technologies, Ltd. Completes Acquisition of Kotura, Inc. Aug 2013. http://www.mellanox.com/page/press_release_item?id=1096

  4. Oplink to be acquired by Koch Industries for $24.25 per share in cash. Nov 2014. http://investor.oplink.com/releaseDetail.cfm?ReleaseID=883795

  5. E. Mounier, C. Troadec, A view on the Silicon Photonics Market, Yole Développement Market Report, 2014

    Google Scholar 

  6. M. Hochberg, T.B. Jones, Towards a fabless silicon photonics. Nat. Photonics 4(8), 492–494 (2010)

    Article  ADS  Google Scholar 

  7. MOSIS service. http://www.mosis.com

  8. C. Gunn, CMOS photonics for high speed interconnects. IEEE Micro 26(2), 58–66 (2006)

    Article  Google Scholar 

  9. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P.D. Dobbelaere, A grating-coupler-enable CMOS photonics platform. IEEE J. Sel. Topics Quantum Electron. 17(3), 597–608 (2011)

    Article  Google Scholar 

  10. F. Boeuf et al., A multi-wavelength 3D-compatible silicon photonics platform on 300 mm Soi wafers for 25 Gb/s applications, in Proceedings of the International Electron Devices Meeting (2013) pp. 13.3.1–13.3.4

    Google Scholar 

  11. S. Assefa et al., A 90 nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications, in Proceedings of the International Electron Devices Meeting (2012) pp. 33.8.1–33.8.3

    Google Scholar 

  12. IBM discusses silicon photonics commercialization strategy. Mar 2014. http://www.lightwaveonline.com/articles/2014/03/ibm-discusses-silicon-photonics-commercialization-strategy.html

  13. GLOBALFOUNDRIES to Acquire IBM’s Microelectronics Business. 20 Oct 2014. http://www-03.ibm.com/press/us/en/pressrelease/45110.wss

  14. D.J. Shin et al., Integration of Silicon Photonics into a DRAM process, in Optical Fiber Communications (OFC) Conference, Tu2C.4, 2013

    Google Scholar 

  15. C. Sun et al., A Monolithically-Integrated Chip-to-Chip Optical Link in Bulk CMOS. IEEE J. Solid-State Circ. 50(4), 828–843 (2015)

    Article  Google Scholar 

  16. J.S. Orcutt et al., Nanophotonics integration in state-of-art CMOS foundries. Opt. Exp. 19(3), 2335–2346 (2011)

    Article  ADS  Google Scholar 

  17. J.S. Orcutt et al., Open foundry platform for high performance electronic-photonic integration. Opt. Exp. 20(11), 12222–12232 (2012)

    Article  ADS  Google Scholar 

  18. M. Georgas, B.R. Moss, C. Sun, J. Shainline, J. S. Orcutt, M. Wade, Y.-H. Chen, K. Nammari, J.C. Leu, A. Srinivasan, R.J. Ram, M.A. Popovic, V. Stojanović, A Monolithically-Integrated Optical Transmitter and Receiver in a Zero-Change 45 nm SOI Process, in 2014 Symposium on VLSI Circuits Digest of Technical Papers, June 2014

    Google Scholar 

  19. The 50G Silicon Photonics Link. http://download.intel.com/pressroom/pdf/photonics/Intel_SiliconPhotonics50gLink_WhitePaper.pdf?iid=pr_smrelease_vPro_materials2

  20. D. Knoll, S. Lischke, L. Zimmermann, B. Heinemann, D. Micusik, P. Ostrovskyy, G. Winzer, M. Kroh, R. Barth, T. Grabolla, K. Schulz, M. Fraschke, M. Lisker, J. Drews, A. Trusch, A. Krüger, S. Marschmeyer, H.H. Richter, O. Fursenko, Y. Yamamoto, B. Wohlfeil, K. Petermann, A. Beling, Q. Zhou, B. Tillack, Monolithically Integrated 25Gbit/sec Receiver for 1.55 μm in Photonic BiCMOS Technology, in Optical Fiber Communications (OFC) Conference, Th4C.4, 2014

    Google Scholar 

  21. T. Yamamoto et al., A 25 Gb/s hybrid integrated silicon photonics transceiver in 28 nm CMOS and SOI, in International Solid State Circuits Conference (ISSCC), Session 22, Paper 22.2, 2015

    Google Scholar 

  22. G. Denoyer, C. Cole, A, Santipo, R. Russo, C. Robinson, L. Li, Y. Zhou, J.A. Chen, B. Park, F. Boeuf, S. Cremer, N. Vulliet, Hybrid silicon photonic circuits and transceiver for 50 G b/s NRZ transmission over single-mode fiber. IEEE J. Lightwave Technol 33(6), 1247–1254 (2015)

    Google Scholar 

  23. T. Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, G.-Q. Lo, Silicon optical interconnect device technologies for 40 Gb/s and beyond. IEEE J. Sel. Top. Quantum Electron. 19(2) (2013)

    Google Scholar 

  24. A.E.–J. Lim, T.-Y. Liow, J. Song, C. Li, Q. Fang, X. Tu, N. Duan, K.K. Chen, R.P.C. Tern, C. Peng, B.W. Mun, M.N. Islam, J.S. Park, C. Subbu, G.-Q. Lo, Path to Silicon Photonics Commercialization: 25 Gb/s Platform Development in a CMOS Manufacturing Foundry Line, in Optical Fiber Communications (OFC) Conference, Th2A.51, 2014

    Google Scholar 

  25. S.K. Selvaraja, P.D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K.K. Bourdelle, W. Bogaerts, D.V. Thourhout, J.V. Campenhout, Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform, in Optical Fiber Communications (OFC) Conference, Th2A.33,2014

    Google Scholar 

  26. D. Feng, W. Qian, H. Liang, B.J. Luff, M. Asghari, High-speed receiver technology on the SOi platform. IEEE J. Sel. Top. Quantum Electron. 19(2), 3800108 (2013)

    Google Scholar 

  27. D. Feng, W. Qian, H. Liang, C.-C. Kung, Z. Zhou, Z. Li, J.S. Levy, R. Shafiiha, J. Fong, B.J. Luff, M. Asghari, High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J. Sel. Top. Quantum Electron. 19(6), 3401710 (2013)

    Google Scholar 

  28. T. Creazzo et al., Integrated tunable CMOS laser. Opt. Express 21(23), 28048–28053 (2013)

    Article  ADS  Google Scholar 

  29. Q. Fang, T.-Y. Liow, J. Song, C.W. Tan, M.B. Yu, G.-Q. Lo, D.L. Kwong, Suspended optical fiber-to-waveguide mode size convertor for silicon waveguides. Opt. Exp. 18(8), 7763–7769 (2010)

    Article  ADS  Google Scholar 

  30. Sei-ichi Itabashi, R&D trends in Silicon Photonics, Special Feature: Silicon Photonic Technologies Leading the Way to a New Generation of Telecommunications, Vol. 8, No. 2, Feb 2010. https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201002sf1.html

  31. ePIXfab. http://www.epixfab.eu/

  32. CMC Microsystems. http://www.cmc.ca/en/NewsAndEvents/PastResearchWorkshops/SiliconPhotonicsWorkshop2012.aspx

  33. AMO. http://www.amo.de/?id=528

  34. Institute of Microelectronic (IME), Agency for Science, Research and Technology (A*STAR). https://www.a-star.edu.sg/ime/

  35. Y. Urino et al., Demonstration of 12.5 Gbps optical interconnects integrated with lasers, optical splitters optical modulators and photodetectors on a single substrate. Opt. Exp. 20(26), B256–B263 (2012)

    Article  Google Scholar 

  36. J.B. You, M. Park, J.W. Park, G. Kim, 12.5 Gbps optical modulation of silicon racetrack resonator based on carrier depletion in asymmetric p-n diode. Opt. Exp. 16(22), 18340–18344 (2008)

    Article  ADS  Google Scholar 

  37. General Europractice MPW runs Schedule and Prices. http://www.europractice-ic.com/docs/MPW2015-general-v4.pdf

  38. R. Ding et al., A silicon platform for high-speed photonics systems, in Optical Fiber Communications (OFC) Conference, OM2E.6, 2012

    Google Scholar 

  39. X. G. Tu, T.-Y. Liow, J. Song, X. Luo, F. Qing, M. Yu, G.-Q. Lo, 50-Gb/s silicon optical modulator with traveling wave electrodes. Opt. Exp. 21(10), 12776–12782 (2013)

    Google Scholar 

  40. G CLR4. https://www.clr4-alliance.org/

  41. Open Optics MSA Design Guide, Mar 2015. http://www.openopticsmsa.org/pdf/Open_Optics_Design_Guide.pdf

  42. Gb/s Ethernet Study Group. http://www.ieee802.org/3/400GSG/

  43. A.E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, D.-L. Kwong, Novel evanescent coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector. Opt. Exp. 19(6), 5040–5046 (2011)

    Article  ADS  Google Scholar 

  44. C.R. Doerr, L. Chen, L.L. Buhl, Y.K. Chen, Eight-channel SiO2/Si3N4/Si/Ge CWDM Receiver. IEEE Photon. Technol. Lett. 23(17), 1201–1203 (2011)

    Article  ADS  Google Scholar 

  45. Y. Huang, J. Song, X. Luo, T.-Y. Liow, G.-Q. Lo, CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration. Opt. Exp. 22(18), 21859–21865 (2014)

    Article  ADS  Google Scholar 

  46. L. He, Y. Liu, C. Galland, A.E.-J. Lim, G.Q. Lo, T.B. Jones, M. Hochberg, A high efficiency non-uniform grating coupler realized with 248 nm optical lithography. IEEE Photon. Technol. Lett. 25(14), 1358–1361 (2013)

    Article  ADS  Google Scholar 

  47. Telcordia Technologies Generic Requirements, GR-468-CORE, Issue 2, 2004

    Google Scholar 

  48. S. Li, L. Wang, T. Shi, P. Cai, M. Huang, W. Chen, C. Hong, D. Pan, Reliability and non-hermetic properties of Ge/Si optoelectronic devices, in Optical Fiber Communications (OFC) Conference, M3B.3, 2015

    Google Scholar 

  49. Great Britain: Parliament: House of Commons: Science and Technology Committee, Bridging the Valley of Death: Improving the Commercialization of Research, Eighth Report of Session 2012–13, Report, Together with Formal Minutes, Oral and Written Evidence (House of Commons Papers, Mar 2013

    Google Scholar 

  50. Integrated Photonics Institute for Manufacturing Innovation (IP-IMI). http://manufacturing.gov/ip-imi.html

Download references

Acknowledgment

This work was supported by the Science and Engineering Research Council of Agency for Science, Technology, and Research (A∗STAR), Singapore, and Exploit Technologies Pte Ltd (ETPL), Singapore under Silicon Photonics Commercialization Flagship Grant ETPL/11-R15FSH-00. The technology transfer to GLOBALFOUNDRIES was funded by Exploit Technologies Pte Ltd (ETPL), A*STAR under Silicon Photonics Commercialization Flagship Grant ETPL/11-R15FSH-001. The authors would like to acknowledge GLOBALFOUNDRIES Fab 3/5, Singapore, as well as P. Dong and Y. K. Chen from Bells Lab, Alcatel-Lucent for the collaborative efforts in IME’s silicon photonics technology platform transfer, and to Michael Hochberg, Tom B. Jones, and team in collaboration for OpSIS and related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Eu-Jin Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lim, A.EJ. et al. (2016). Path to Silicon Photonics Commercialization: The Foundry Model Discussion. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics