Skip to main content

Semiconductor Lasers for High-Density Optical Communication Systems

  • Chapter
  • First Online:
High Spectral Density Optical Communication Technologies

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 6))

  • 2079 Accesses

Abstract

Semiconductor lasers have several advantages compared to other types of lasers (a fiber ring laser, a solid-state laser, a gas laser), such as compactness, integrability to other components (a modulator, a power monitor photodiode, a wavelength tuning component). In addition, a monolithic tunable laser can be fabricated in the semiconductor by combining wavelength tuning regions and a phase control region together with an active region. That is why a monolithic integrated semiconductor tunable laser is very attractive not only for a compact light source for large-capacity, optical communication systems but also for economical backup resource. However, there are several technical issues to achieve high-quality semiconductor tunable lasers applicable to high-density optical communication systems due to the severe requirements of narrow spectral linewidth, wide tunability, and high wavelength stability.

In this chapter, several technical methodologies for improving spectral linewidth and wavelength tunability are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Seimetz, Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation. Paper presented at optical fiber communication conference 2008 (OFC2008), OTuM2, San Diego, CA, 24-28 Feb 2008

    Google Scholar 

  2. M. Okai, M. Suzuki, T. Taniwatari, Strained multiquantum-well corrugation pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth. Electron. Lett. 29(19), 1696 (1993)

    Article  ADS  Google Scholar 

  3. G.M. Smith, J.S. Hughes, R.M. Lammert, M.L. Osowski, G.C. Papen, J.T. Verdeyen, J.J. Coleman, Very narrow linewidth asymmetric cladding InGaAs-GaAs ridge waveguide distributed Bragg reflector lasers. IEEE Photon. Technol. Lett. 8(4) 476 (1996)

    Article  ADS  Google Scholar 

  4. T. Fujita, J. Phya, K. Matsuda, M. Ishino, H. Sato, H. Serizawa, “Narrow spectral linewidth characteristics of monolithic integrated-passive-cavity InGaAsP/lnP semiconductor lasers”. Electron. Lett. 21(9), 374 (1985)

    Article  Google Scholar 

  5. M. Kourogi, C.-H. Shin, M. Ohtus, A 250 Hz spectral linewidth 1.5 μm MQW-DFB laser diode with negative-electrical-feedback. IEEE Photon. Technol. Lett. 3(6), 496 (1991)

    Article  ADS  Google Scholar 

  6. B. Dahmani, L. Hollberg, R. Drullinger, Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12(11), 876 (1987)

    Article  ADS  Google Scholar 

  7. C.-H. Shin, M. Ohtsu, Stable semiconductor laser with a 7-Hz linewidth by an optical-electrical double-feedback technique. Opt. Lett. 15(24), 1455 (1990)

    Article  ADS  Google Scholar 

  8. S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Ishikawa, Long-cavity, multiple-phase-shift, distributed feedback laser for linewidth narrowing. Electron. Lett. 25(10), 629 (1989)

    Article  Google Scholar 

  9. M. Takahashi, Y. Michitsuji, M. Yoshimura, Y. Yamazoe, H. Nishizawa, T. Sugimoto, Narrow spectral linewidth 1.5 μm GaInAsP/InP distributed Bragg reflector (DBR) lasers. IEEE J. Quantum Electron. 25(6), 1280 (1989)

    Article  ADS  Google Scholar 

  10. T. Kunii, Y. Ogawa, H. Wada, T. Nonaka, Y. Kawai, Narrow-spectral-linewidth, high-output-power operation, and FM response characteristics in 1.5 μm butt-jointed DBR lasers. IEEE J. Quantum Electron. 27(6), 1773 (1991)

    Article  ADS  Google Scholar 

  11. M. Kitamura, H. Yamazaki, T. Sasaki, N. Kida, H. Hasumi, I. Mito, 250 kHz spectral linewidth operation of 1.5 μm multiple quantum well DFB-LD’s. IEEE Photon. Technol. Lett. 2(5), 310 (1990)

    Article  ADS  Google Scholar 

  12. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, T. Harada, Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth. IEEE J. Quantum Electron. 27(6), 1767 (1991)

    Article  ADS  Google Scholar 

  13. T. Kunii, Y. Matsui, H. Horikawa, T. Kamijoh, T. Nonaka, Narrow linewidth (85 kHz) operation in long cavity 1.5 μm-MQW DBR laser. Electron. Lett. 27(9), 691 (1991)

    Article  Google Scholar 

  14. F. Kano, T. Yamanaka, N. Yamamoto, H. Mawatari, Y. Tohmori, Y. Yoshikuni, Linewidth enhancement factor in InGaAsP/InP modulation-doped strained multiple-quantum-well lasers. IEEE J. Quantum Electron. 30(2), 533 (1994)

    Article  ADS  Google Scholar 

  15. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. QE-18, 259 (1982)

    Article  ADS  Google Scholar 

  16. N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, Measurement and evaluation of chirp and linewidth enhancement factor of a 1.3 μm quantum dot laser. Presented on conference on lasers and electrooptics 2004 (CLEO2004), vol.1, San Francisco, CA, 2004.

    Google Scholar 

  17. A.V. Uskov, E.P. O’Reilly, D. McPeake, N.N. Ledentsov, D. Bimberg, G. Huyet, Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states. Appl. Phys. Lett. 84(2), 272 (2004)

    Article  ADS  Google Scholar 

  18. K. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, Tunable, narrow-linewidth and high-power /4-shifted DFB laser. Electron. Lett. 25(15), 990 (1989)

    Article  Google Scholar 

  19. H. Yamazaki, M. Yamaguchi, M. Kitamura, Spectral linewidth rebroadening in MQW-DFB LDs caused by spontaneous emission noise in SCH barrier layers. IEEE Photo. Technol. Lett. 6(3), 341 (1994)

    Article  ADS  Google Scholar 

  20. K. Kikuchi, Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit. IEEE J. Quantum Electron. 25(4), 684 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  21. Redfern Integrated Optics Inc., http://www.rio-inc.com/

  22. L.A. Coldren, G.A. Fish, Y. Akulova, J.S. Barton, L. Johansson, C.W. Coldren, Tunable semiconductor lasers: a tutorial. IEEE J. Lightwave Technol. 22(1), 193 (2004)

    Article  ADS  Google Scholar 

  23. J. Buus, E.J. Murphy, Tunable lasers in optical networks. IEEE J. Lightwave Technol. 24(1), 5 (2006)

    Article  ADS  Google Scholar 

  24. P.I. Kuindersma , W. Scheepers, J.H.M. Cnoops, P.J.A. Thijs, G.L.A.v.d. Hofstad, T.v. Dongen, J.J.M. Binsma, Tunable three-section, strained MQW, PA-DFB’s with large single mode tuning range (72Å) and narrow linewidth (around 1 MHz). Presented on 12th IEEE Intrenational Semiconductor Laser Conference(ISLC1990), Davos, M-4 (1990)

    Google Scholar 

  25. N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, H. Oohashi, Wideband tuning of tunable distributed amplification distributed feedback laser array. Electron. Lett. 44(3), 205 (2008)

    Article  Google Scholar 

  26. A. Hayakawa , K. Takabayashi, S. Tanaka, S. Tomabechi, M. Ekawa, K. Morito, Tunable twin-guide distributed feedback laser with 8-nm mode-hop-free tuning range. Presented on CLEO/PacificRim 2005, CWJ2-3 (2005)

    Google Scholar 

  27. S. Murata, I. Mito, K. Kobayashi, Over 720 GHz (5-8 nm) frequency tuning by a 1.5 μm DBR laser with phase and Bragg wavelength control regions. Electron. Lett. 23(8), 403 (1987)

    Article  Google Scholar 

  28. C.J. Chang-Hasnain, Tunable VCSEL. IEEE J. Select. Topics Quantum Electron. 6, 978 (2000)

    Article  Google Scholar 

  29. W. Janto, K. Hasebe, N. Nishiyama, C. Caneau, T. Sakaguchi, A. Matsutani, P.B. Dayal, F. Koyama, C.-E. Zah, Athermal operation of 1.55 μm InP-based VCSEL with thermally-actuated cantilever structure. Presented on 20th IEEE International Semiconductor Laser Conference(ISLC2006), PD1.1, Hawaii, USA, Sept. 2006

    Google Scholar 

  30. D. Anthon, J.D. Berger, A. Tselikov, C+L band MEMS tunable external cavity semiconductor laser. Presented on optical fiber communication conference 2004(OFC2004), WL2, San Jose, CA, 2004

    Google Scholar 

  31. H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, T. Sasaki, Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems. IEEE Photon. Technol. Lett. 15(7), 903 (2003)

    Article  ADS  Google Scholar 

  32. T. Mukaihara, Y. Nakagawa, H. Nasu, H. Kambayashi, M. Oike, S. Yoshimi, T. Kurobe, T. Kimoto, K. Muranushi, T. Nomura, A. Kasukawa, High power, low noise, low power consumption, 25 GHz × 180 ch thermally tunable DFB laser module integrated with stable wavelength monitor. Presented in 29th European conference on optical communication(ECOC2003), Rimini, We.P81, 2003

    Google Scholar 

  33. H. Ishii, F. Kano, Y. Tohmori, Y. Kondo, T. Tamamura, Y. Yoshikuni, Narrow spectral linewidth under wavelength tuning in thermally tunable super-structure-grating (SSG) DBR lasers. IEEE J. Sel. Top. Quantum Electron. 1(2), 401 (1995)

    Article  Google Scholar 

  34. Y.A. Akulova, G.A. Fish, P.-C. Koh, C.L. Schow, P. Kozodoy, A.P. Dahl, S. Nakagawa, M.C. Larson, M.P. Mack, T.A. Strand, C.W. Coldren, E. Hegblom, S.K. Penniman, T. Wipiejewski, L.A. Colren, Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter. IEEE J. Sel. Top. Quantum Electron. 8(6), 1349 (2002)

    Article  Google Scholar 

  35. A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, M.J. Wale, Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance. IEEE J. Sel. Top. Quantum Electron. 11(1), 149 (2005)

    Article  Google Scholar 

  36. S. Matsuo, S.-H. Jeong, T. Segawa, H. Okamoto, Y. Kawaguchi, Y. Kondo, H. Suzuki, Y. Yoshikuni, Digitally tunable ring laser using ladder filter and ring resonator. IEEE J. Sel. Top. Quantum Electron. 11(5), 924 (2005)

    Article  Google Scholar 

  37. T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, H. Suzuki, Full C-band tuning operation of semiconductor double-ring resonator-coupled laser with low tuning current. IEEE Photon. Technol. Lett. 19(17), 1322 (2007)

    Article  ADS  Google Scholar 

  38. K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, K. Morito, Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter. Electron. Lett. 40(19), 1187 (2004)

    Article  Google Scholar 

  39. R. Todt, S. Watanabe, Y. Deki, M. Takahashi, T. Takeuchi, S. Takaesu, T. Miyazaki, M. Horie, H. Yamazaki, Widely tunable resonated-ring-reflector lasers covering C- and L-bands. Presented on 33rd European conference on optical communication (ECOC2007), Berlin, PD.2.5, 2007

    Google Scholar 

  40. B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishiton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, T. Razazan, 20-mW widely tunable laser module using DFB array and MEMS selection. IEEE Photon. Technol. Lett. 14(10), 1457 (2002)

    Article  ADS  Google Scholar 

  41. J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, K. Kudo, Full C-band external cavity wavelength tunable laser using a liquid-Crystal-based tunable mirror. IEEE Photon. Technol. Lett. 17(3), 681 (2005)

    Article  ADS  Google Scholar 

  42. Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, H. Yamazaki, Wide-wavelength tunable lasers with 100 ghz fsr ring resonators. Electron. Lett. 43(4), 225 (2007)

    Article  Google Scholar 

  43. H. Tanobe, F. Koyama, K. Iga, Spectral linewidth of AlGaAs/GaAs surface-emitting laser. Electron. Lett. 25(21), 1444 (1989)

    Article  ADS  Google Scholar 

  44. F. Monti di Sopra, H.P. Zappe, M. Moser, R. Hövel, H.-P. Gauggel, K. Gulden, Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth. IEEE Photon. Technol. Lett. 11(12), 1533 (1999)

    Article  ADS  Google Scholar 

  45. R. Shau, H. Halbritter, F. Riemenschineider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. maute, P. Meissner, and M.-C. Amann, Linewidth of InP-based 1.55 ?m VCSELs with buried tunnel junction. Electron. Lett. 39(24), 1728 (2003)

    Article  Google Scholar 

  46. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, H. Oohashi, 140-nm quasi-continuous fast sweep using SSG-DBR lasers. IEEE Photon. Technol. Lett. 20(12), 1015 (2008)

    Article  Google Scholar 

  47. N. Fujiwara, H. Ishii , H. Okamoto, Y. Kawaguchi, Y. Kondo, H. Oohashi, Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator. IEEE J. Sel. Top. Quantum Electron. 13(5), 1164 (2007)

    Article  Google Scholar 

  48. H. Hatakeyama, K. Kudo, Y. Yokoyama, K. Naniwae, T. Sasaki, Wavelength-selectable microarray light sources for wide-band DWDM applications. IEEE J. Sel. Top. Quantum Electron. 8(6), 1341 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Uenohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uenohara, H. (2010). Semiconductor Lasers for High-Density Optical Communication Systems. In: Nakazawa, M., Kikuchi, K., Miyazaki, T. (eds) High Spectral Density Optical Communication Technologies. Optical and Fiber Communications Reports, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10419-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10419-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10418-3

  • Online ISBN: 978-3-642-10419-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics