Skip to main content

Composition and Transport Behavior of Soil Nanocolloids in Natural Porous Media

  • Chapter
  • First Online:
Nanoparticles in the Water Cycle

Abstract

Natural nanoparticles and nanocolloids are ubiquitous in soil environments playing important roles in many environmental processes, including soil genesis, nutrient cycling, dispersion/flocculation, sorption, precipitation, dissolution, contaminant transport, biogeochemical transformations, bioavailability, and various remediation practices (Christian et al., 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baalousha M, Lead JR (2007) Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy. Environ Sci Technol 41: 1111–1117.

    Article  CAS  Google Scholar 

  • Bradford SA, Torkzaban S, Walker SL (2007) Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res 41: 3012–3024.

    Article  CAS  Google Scholar 

  • Camobreco VJ, Richards BK, Steenhuis TS, Peverly JH, McBride MB (1996) Movement of heavy metals through undisturbed and homogenized soil columns. Soil Sci 161: 740–750.

    Article  CAS  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation, and behaviour in environmental media. Ecotoxicology 17: 326–343.

    Article  CAS  Google Scholar 

  • Denaix L, Semlali RM, Douay F (2001) Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environ Pollut 113: 29–38.

    Article  Google Scholar 

  • Gang C, Flury M (2005) Retention of mineral colloids in unsaturated porous media as related to their surface properties. Colloids Surf A Physicochem Eng Asp 256: 207–216.

    Article  Google Scholar 

  • Gove L, Cook CM, Nicholson EA, Beck AJ (2001) Movement of water and heavy metals (Zn, Cu, Pb, and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions. Biores Technol 78: 171–179.

    Article  CAS  Google Scholar 

  • Han N, Thompson ML (1999) Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids. J Environ Qual 28: 939–944.

    Article  CAS  Google Scholar 

  • Jacobsen OH, Moldrup P, Larsen C, Konnerup L, Petersen LW (1997) Particle transport in macropores of undisturbed soil columns. J Hydrol 196: 185–203.

    Article  CAS  Google Scholar 

  • Jekel MR (1986) The stabilization of dispersed mineral particles by adsorption of humic substances. Water Res 20: 1543–1554.

    Article  CAS  Google Scholar 

  • Kaplan DI, Bertsch PM, Adriano DC, Miller WP (1993) Soil-borne mobile colloids as influenced by water flow and organic carbon. Environ Sci Technol 27: 1192–1200.

    Article  Google Scholar 

  • Karathanasis AD (1999) Subsurface migration of Cu and Zn mediated by soil colloids. Soil Sci Soc Am J 63: 830–838.

    Article  CAS  Google Scholar 

  • Karathanasis AD (2000) Colloid-mediated transport of Pb through soil porous media. Intern J Environ Studies 57: 579–596.

    Article  CAS  Google Scholar 

  • Karathanasis AD (2003) Mineral controls in colloid-mediated transport of metals in soil environments. In: Kingery WLSelim HM(eds.) Geochemical and Hydrological Reactivity of Heavy Metals in Soils. CRC Press, pp. 25–49.

    Google Scholar 

  • Karathanasis A, Johnson C, Matocha C (2007) Subsurface transport of heavy metals mediated by biosolid colloids in waste-amended soils. In Frimmel FH, Von der Kammer F, Fleming HC (eds.) Colloidal Transport in Porous Media, Springer, Berlin, pp. 175–201.

    Chapter  Google Scholar 

  • Karathanasis AD, Hajek BF (1982) Revised methods for rapid quantitative determination of minerals in soil clays. Soil Sci Soc Am J 46: 419–425.

    Article  CAS  Google Scholar 

  • Karathanasis AD, Johnson DMC (2006) Stability and transportability of biosolid colloids through undisturbed soil monoliths. Geoderma 130: 334–345.

    Article  CAS  Google Scholar 

  • Karathanasis AD, Johnson DMC, Matocha CJ (2005) Biosolid colloid-mediated transport of Cu, Zn, and Pb in waste-amended soils. J Environ Qual 34: 1153–1164.

    Article  CAS  Google Scholar 

  • Kretzschmar R, Robarge WP, Amoozegar A (1995) Influence of natural organic matter on transport of soil colloids through saprolite. Water Resour Res 31: 435–445.

    Article  CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2007) Environmental Colloids and Particles: Behaviour, Separation, and Characterization. J. Wiley and Sons, Chichester, UK, 687 pp.

    Google Scholar 

  • Li Z, Shuman LM (1997) Mobility of Zn, Cd, and Pb in soils as affected by poultry litter extract-I. Leaching in soil columns. Environ Pollut 2: 219–226.

    Article  Google Scholar 

  • Liang P, Ding Q, Song F (2006) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace Cu in water samples. J Sep Sci 28: 2339–2343.

    Article  Google Scholar 

  • Lyven B, Hassellov M, Turner DR, Haraldsson C, Andersson K (2003) Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow-field flow fractionation coupled to ICPMS. Geochim Cosmochim Acta 67: 3791–3802.

    Article  CAS  Google Scholar 

  • Miller JO (2008) Colloid-mediated transport of heavy metals in soils following reclamation with and without biosolid application. Ph.D. Dissertation, 129 pp., University of Kentucky.

    Google Scholar 

  • NRCS (1996) Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Version 3.0, USDA, National Soil Survey Center, Lincoln, NE.

    Google Scholar 

  • Ouyang Y, Shinde D, Mansell RS, Harris W (1996) Colloid-enhanced transport of chemicals in subsurface environments: a review. Crit Rev Environ Sci Technol 26: 189–204.

    Article  CAS  Google Scholar 

  • Ranville JF, Chittleborough DJ, Beckett R (2005) Particle-size and element distribution of soil colloids: implications for colloid transport. Soil Sci Soc Am J 69: 1173–1184.

    Article  CAS  Google Scholar 

  • Roy SC, Dzombak DA (1997) Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environ Sci Technol 37: 656–664.

    Article  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A Physicochem Eng Asp 107: 1–56.

    Article  CAS  Google Scholar 

  • Seta AK, Karathanasis AD (1996) Colloid-facilitated transport of metolachlor through intact soil columns. J Environ Sci Health B 31(5): 949–968.

    Article  Google Scholar 

  • Seta AK, Karathanasis AD (1997a) Stability and transportability of water-dispersible soil colloids. Soil Sci Am J 61: 604–611.

    Article  CAS  Google Scholar 

  • Seta AK, Karathanasis AD (1997b) Atrazine adsorption by soil colloids and co-transport through subsurface environments. Soil Sci Soc Am J 61: 612–617.

    Article  CAS  Google Scholar 

  • USA-EPA (1994) Methods for the determination of metals in environmental samples. Method 200.2. EPA/600/R-94/111. Washington, DC, USA.

    Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF Jr. (2007) Aquatic environmental nanoparticles. J Environ Monitor 9: 1306–1316.

    Article  CAS  Google Scholar 

  • Zhou LX, Wong JW (2001) Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. J Environ Qual 30: 878–883.

    Article  CAS  Google Scholar 

  • Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid, and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal Bioanal Chem 385: 1520–1525.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios D. Karathanasis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karathanasis, A.D. (2010). Composition and Transport Behavior of Soil Nanocolloids in Natural Porous Media. In: Frimmel, F., Niessner, R. (eds) Nanoparticles in the Water Cycle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10318-6_4

Download citation

Publish with us

Policies and ethics