Skip to main content

Surface Mass Variability from GRACE and Hydrological Models : Characteristic Periods and the Reconstruction of Significant Signals

  • Chapter
  • First Online:
System Earth via Geodetic-Geophysical Space Techniques

Abstract

In order to analyse spatio-temporal variations of surface mass anomalies induced by hydrological mass redistributions at the Earth’s surface we use products from the Gravity Recovery and Climate Experiment (GRACE) satellite mission as well as global hydrological models. As a novelty we identify dominant periodic patterns that are not restricted to the fundamental annual frequency and its overtones, using a method that combines conventional Principal Components Analysis (PCA) with a determination of sine waves of arbitrary periods from the principal components. We assess the significance of the derived spectra taking into account correlated errors of the GRACE data by means of a Monte-Carlo technique. This allows us to create filtered GRACE time series including only the significant terms, which serve for basin-specific calibration of hydrological models with respect to the dominant periodic water storage variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys. Res. Lett. 31, L13310.

    Article  Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 270, 105–134.

    Article  Google Scholar 

  • Gundlich B, Koch K-R, Kusche J (2003) Gibbs sampler for computing and propagating large covariance matrices. J. Geod. 77(9), 514–528.

    Article  Google Scholar 

  • Güntner A, Stuck J, Werth S et al. (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour. Res. 43, W05416.

    Article  Google Scholar 

  • Horst R, Pardalos PM (eds.) (1995) Handbook of Global Optimization, Nonconvex Optimization and Its Applications, Vol. 2., Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Huang J, van den Dool HM, Georgakakos PK (1996) Analysis of model-calculated soil moisture over the United States (1981–1993) and applications of long-range temperature forecasts. J. Clim. 9, 1350–1362.

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Tech Rep 327, Ohio State University.

    Google Scholar 

  • Kalos MH, Whitlock PA (1988) Monte Carlo Methods, Wiley, New York.

    Google Scholar 

  • Kusche J (2007) Approximate decorrelation and nonisotropic smoothing of time-variable GRACE-type gravity field models. J. Geod. 81(11), 733–749.

    Article  Google Scholar 

  • Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J. Geod. 83(10), 903–913.

    Article  Google Scholar 

  • Mautz R, Petrovic S (2005) Erkennung von physikalisch vorhandenen Periodizitäten in Zeitreihen. ZFV (Zeitschrift f. Geodäsie, Geoinformation und Landmanagement) 130(3), 156–165.

    Google Scholar 

  • Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances, Part I: The land dynamics (LaD) model. J. Hydrometeor. 3, 283–299.

    Article  Google Scholar 

  • Petrovic S, Schmidt R, Wünsch J et al. (2007) Towards a characterization of temporal gravity field variations in GRACE observations and global hydrology models. In: Proceedings of the 1st International Symposium of the Gravity Field Service “Gravity Field of the Earth”, Istanbul, J Mapping (ISSN 1300-5790) 73, Special Issue: 18, 199–204.

    Google Scholar 

  • Preisendorfer RW (1988) Principal Component Analysis in Meteorology and Oceanography, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Rodell M, Houser PR, Jambor U et al. (2004) The global land data assimilation system. Bull. Amer. Meteorol. Soc. 85(3), 381–394.

    Article  Google Scholar 

  • Schmidt R, Schwintzer P, Flechtner F et al. (2006) GRACE observations of changes in continental water storage. Glob. Planet Change 50(1–2), 112–126.

    Article  Google Scholar 

  • Schmidt R, Petrovic S, Güntner A et al. (2008) Periodic components of water storage changes from GRACE and global hydrological models. J. Geophys. Res. 113, B08419.

    Article  Google Scholar 

  • Tamisiea ME, Mitrovica JX, Davis JL (2007) GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316(5826), 881–883.

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in Spring 2004. Nature 443, 329–331.

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 103, 30205–30230.

    Article  Google Scholar 

  • Werth S, Güntner A, Petrovic S, Schmidt R (2009a) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci. Lett. 277(1–2), 166–173.

    Article  Google Scholar 

  • Werth S, Güntner A, Schmidt R, Kusche J (2009b) Evaluation of GRACE filter tools from a hydrological perspective. Geophys. J. Int., doi: 10.1111/j.1365-246X.2009.04355.x.

    Google Scholar 

  • Wilks DS (1995) Statistical Methods in the Atmosphere Sciences: An Introduction, Academic Press, San Diego, CA.

    Google Scholar 

  • Zeng N (1999) Seasonal cycle and interannual variability in the Amazon hydrologic cycle. J. Geophys. Res. 104(D8), 9097–9106.

    Article  Google Scholar 

Download references

Acknowledgments

The German Ministry of Education and Research (BMBF) supported these investigations within the geoscientific R+D programme GEOTECHNOLOGIEN “Erfassung des Systems Erde aus dem Weltraum” under grant 03F0424A. We thank P.C.D. Milly, Y. Fan and H. van den Dool, M. Rodell as well as P. Döll and J. Alcamo for providing the LaD, H96, GLDAS and WGHM model data, respectively. Thanks also go to D.W. Pierce for his Empirical Orthogonal Functions (EOF) software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetozar Petrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petrovic, S., Braun, R., Barthelmes, F., Wünsch, J., Kusche, J., Hengst, R. (2010). Surface Mass Variability from GRACE and Hydrological Models : Characteristic Periods and the Reconstruction of Significant Signals . In: Flechtner, F., et al. System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_32

Download citation

Publish with us

Policies and ethics