Skip to main content

Chemical Vapor Deposition (CVD)

  • Chapter
Handbook of Thin-Film Technology

Abstract

In chemical vapor deposition (CVD) the compounds of a vapor phase, often diluted with an inert carrier gas, react at a hot surface to deposit a solid film [1, 2]. The importance of CVD is due to the versatility for depositing a large variety of elements and compounds at relatively low temperatures and at atmospheric pressure. Amorphous, polycrystalline, epitaxial, and uniaxially oriented polycrystalline films can be deposited with a high degree of purity. Aspects of CVD include the chemical reactions involved, the thermodynamics and kinetics of the reactors, and the transport of material and energy to and from the reaction site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Powel CF, Oxley JH, Blocher JM Jr. (eds) (1966) Vapor Depositions. Wiley & Sons, New York

    Google Scholar 

  2. Wahl G, Davies PB, Bunshah RF, Joyce BA, Bain CD, Wegner G, Remmers M, Walsh FC, Hieber K, Sundgren J-E, Bachmann PK, Miyazawa S, Thelen A, Strathmann H (2000) “Thin Films” Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  3. Tavares J, Swanson EJ, Coulombe S (2008) Plasma Synthesis of Coated Metal Nanoparticles with Surface Properties Tailored for Dispersion. Plasma Processes and Polymers 5(8):759

    Article  Google Scholar 

  4. Chamberlain RR, Skarman JS (1966) Chemical spray deposition process for inorgqanic films. J Electrochem Soc 113(1):

    Google Scholar 

  5. Bloem, J.: Nucleation and growth of silicon by CVD. Journ.Cryst.Groth 50 (1980), pp. 581/604

    Google Scholar 

  6. Simmler W (2005) “Silicon Compounds, Inorganic”, Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  7. Schleich, D.M.: CVD: a chemical approach to ceramic materials. Proc. VIIth Euro CVD Conf. Perigan 1989, ed by M.Ducarroir, C. Bernard, L. Vandenbulcke. Publ. by Ed. De Physique, coll de Phys. Additif au Coll C5 suppl.no5 (1989), pp. C5-961/C5-979

    Google Scholar 

  8. Scalilotti, M., L. Horiuuchi, J. Decobert, M.J. Brasil, L.P. Cardoso, P. Ossart and J.D. Ganiere: Growth and characterization of GaAlAs/GaAs and GaInAs/IP structures: The effect of a pulse metalorganic flow, J.Appl.Phys. 71 (1992), pp. 179/186

    Google Scholar 

  9. Schmaderer F, Wahl G, Dietrich M, Dustmann CH (1984) Preparation of stabilized superconducting NbCl-y Ny Carbon fibres. In: Mc Robinson D, v d Brekel CHJ, Cullen GW, Blocher JM, Rai-Choudhury P (eds) Proc. IX Int. CVD Conf.. ESC, Pennington, pp 663–672

    Google Scholar 

  10. Sievers RE, Sadlowski JE (1978) Science 201:217

    Article  Google Scholar 

  11. Sicre, J.E., J. T. Dubois, K.J. Eisentraut and R.E. Sievers: Volatile Lanthanide Chelates. II. Vapor Pressures, Heat of Vaporization and Heats of Sublimation. J. Am. Chem. Soc. 91 (1969), PP. 3476/3481

    Google Scholar 

  12. Kuttruff H (1988) Physik und Technik des Ultraschalls. HirzelVerl., Stuttgart

    Google Scholar 

  13. Bachmann PK, Leers D, Lydtin H (1991) Towards a general concept of diamond CVD Diamond an related Materials, vol. 1., pp 1–12

    Google Scholar 

  14. Isberg J (2004) Single crystal diamond for electronic applications. Diamond and Related Materials 13(2):320–324

    Article  Google Scholar 

  15. Kennard EH (1938) Kinetic theory of gases. McGraw-Hill, New York

    Google Scholar 

  16. Hirschfelder JO, Curtis CF, Bird RB (1954) Molecular Theory of Gases and Liquids. Wiley, New York

    Google Scholar 

  17. Reid RC, Prausnitz JM, Sherwood TK (1977) The Properties of Gases and Liquids. McGraw Hill, New York

    Google Scholar 

  18. Neufeld PD, Jansen AR, AziZ A (1972) Emirical Equation to Calculate 16 of Transport Collision Integrals \(\Omega^{(1,s)}\) for the Lennard-Jones (12-6). Potential Transport. J Chem Phys 57:1100–1102

    Article  Google Scholar 

  19. Wahl G (1975) ed by. In: Bocker JM, Hintermann HE, Hall LH (eds) CVD of \(\mathrm{SiO}_{2}\) and Boro- and Phospho-Silicate glasses by the reaction of \({\mathrm{SiH}}_{4},{\mathrm{B}}_{2}{\mathrm{H}}_{6}\) or \({\mathrm{PH}}_{3}\) with \({\mathrm{O}}_{2}\), Proc. Of V Int. Conf. on CVD. ECS, Princeton, pp 391–406

    Google Scholar 

  20. Volmer M (1939) Kinetik der Phasenbildung. Verlag. Th. Steinkopff, Dresden, Leipzig

    Google Scholar 

  21. Stranski, I.N.: 2.Krist. 105 (1943/44), pp.91/123

    Google Scholar 

  22. Tammann G (1922) Aggregatzustände. Verlag von Leopold Voss, Leipzig

    Google Scholar 

  23. Walton D (1962) Nucleation of Vapor Deposits. J ChemPhys 37:2182–2188

    Article  Google Scholar 

  24. Hirth JP, Pound GM (1963) Condensation and evaporation. Pergamon Press, Oxford

    Google Scholar 

  25. Velfe, H.D., H. Stenzel and M. Krohn: Nucleation Data for Gold on Pure NaCl Surfaces, Thin Sol. Films 98 (1982), pp. 115/124

    Google Scholar 

  26. Jaeger RC (2002) “Film Deposition”. Introduction to Microelectronic Fabrication, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Bloem, J.: Nucleation and growth of silicon by CVD. Journ.Cryst.Growth 50 (1989), pp.581/604

    Google Scholar 

  28. Bonzel HP (1973) Surface Diffusion of Metals Structure and Properties of Metal Surface, vol. 1. Maruzen Company, Tokyo, pp 248–327

    Google Scholar 

  29. Sze SM (2008) Semiconductor devices: physics and technology. Wiley-India, ISBN, p 384

    Google Scholar 

  30. Watkins Johnson Company, Scotts Valley, CA. Internal Report

    Google Scholar 

  31. Ay, Aydinli (2004) Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials 26(1):33–46

    Article  Google Scholar 

  32. Kushner KJ (1988) J Appl Phys 63:2532

    Article  Google Scholar 

  33. Felten F, Senateur JP, Weiss F, Madar R, Abrutis A (1995) Deposition of oxides layers by computer controlled injection-LPCVD. J Phys IV France 5(C5):1079–1086

    Article  Google Scholar 

  34. Kelvin Chan and Karen K. Gleason, Photoinitiated Chemical Vapor Deposition of Polymeric Thin Films Using a Volatile Photoinitiator, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H. (2015). Chemical Vapor Deposition (CVD). In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_9

Download citation

Publish with us

Policies and ethics