Skip to main content

Basic Principle of Plasma Physics

  • Chapter
Handbook of Thin-Film Technology
  • 6113 Accesses

Abstract

Thin film technologies are generally based on plasma-supported methods (see Fig. 4.1). Plasma means:

- When in a liquid or a gas the number of free charge carriers is so large that charge carriers affect the physical properties of the medium substantially.

- When electromagnetic interactions between the charged particles take place.

- When the number of positive and negative charge carriers is for each unit of volume equally large in each case; the total quantity can be arbitrary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cap F (1970) Einführung in die Plasmaphysik I. Pergamon Press, Oxford

    Google Scholar 

  2. Linhart JG (1960) Plasma Physics. North Holland Publishing C., Amsterdam

    Google Scholar 

  3. Chandrasekhar S (1960) University of Chicago Press. Plasma Physics :

    Google Scholar 

  4. Maxwell JC (1954) A Treatise on Electricity and Magnetism (891). Dover Publications, Inc., New York

    Google Scholar 

  5. Mongomerry D, Tidman D (1964) Plasma Kinetic Theory. McGraw Hill, New York

    Google Scholar 

  6. Kunkel M (1966) Plasma Physics in Theory and Application. McGraw Hill,

    Google Scholar 

  7. Dupree, A: Phys. Fluids 4, 696 (1961); 6, 1714 (1963)

    Google Scholar 

  8. Sears FW (1950) An Introduction to Thermodynamics, The Kintetic Theory of Gases and Statistical Mechanics. Addision-Weseley Press, Inc., Reading, Mass.

    Google Scholar 

  9. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 20. Juni 2011. Wert für die Rydberg-Konstante

    Google Scholar 

  10. Cobine JD (1958) Gaseous Conductors. Dover Publications, Inc., New York

    Google Scholar 

  11. Phelps AV, Molnar JP (1963) Phys Rev 89:1202

    Article  Google Scholar 

  12. Chuan, R.L.: A Note on the Adition of Heat to a Gas through Electrical Discharge, USCEC Rept. 68-202, January, 1957

    Google Scholar 

  13. Loeb LB (1956) The recombination of ions Handbuch der Physik, vol. XXI. Springer-Verlag, Berlin

    Google Scholar 

  14. Massey HSW, Burhop EHS (1952) Elektronic and ionic impact phenomena. Oxford University Press, Fair Lawn

    Google Scholar 

  15. Saha MN (1920) Ionization in the solar chromosphere. Phil Mag 40(238):472

    Article  Google Scholar 

  16. Bond, J. W., Jr.: The nature of shock front in argon. Los Alamos: Sci.Lab.Rept.LA-1693, Juli 1, 1954

    Google Scholar 

  17. Moore, C.E.: Atomic energy levels. Nat. Bureau of Standards Circ. 467 Vls. I,II and III. Washington: 1949, 1952 und 1958

    Google Scholar 

  18. Laporte O (1958) High temperature shock waves. In: Third AGARD Colloquium on Combustion and Propulsion. Pergamon Press, New York, p 499

    Google Scholar 

  19. Ohlsen HH (1961) Partition function cut-off and lowering of the ionization potential in an argon-plasma. Phys Rev 124(4):1703

    Article  Google Scholar 

  20. Paschen, F.: Ann.Phys. (4 Folge) 50, p.901 (1889)

    Google Scholar 

  21. Penning FM (1957) Electical Discharges in Gases. The Macmillian Company, New York

    Google Scholar 

  22. Schulz P (1974) Elektronische Vorgänge in Gasen und Festkörpern. Verlag O. Braun, Karlsruhe

    Google Scholar 

  23. Davies WD, Vanderslice TA (1993) PhysRev 131:219

    Article  Google Scholar 

  24. Westwood WD, Wilcox PC (1972) J Appl Phys 42:4099

    Google Scholar 

  25. Little PF, von Engel A (1954) The hollow cathode effect and the theory of glow discharges. Proc Roy Soc A 224:209

    Article  Google Scholar 

  26. Musha T (1962) Cathode sputtering in hollow cathode discharges. J Phys Soc Japan 17:1440

    Article  Google Scholar 

  27. Penache C., Study of high-pressure glow discharges generated by micro-structured electrode (MS) arrays, Dissertation J.W. Goethe Universität Frankfurt Main (2002)

    Google Scholar 

  28. Mildner M, Korzec D, Engemann J (1999) 13.56 MHz hollow cathode jet matrix plasma source for large area surface coating. Surface and Coating Techn 112:366

    Article  Google Scholar 

  29. Delcroix JL, Trinidade AR (1974) Advanc In Electronics and Electron Phys 35:87

    Article  Google Scholar 

  30. Brown SC (1959) Basic data of plasma physica. John Wiley, New York

    Google Scholar 

  31. Wolf B (1995) Handbook of Ion Sources. CRC Press, Boca Raton

    Google Scholar 

  32. Sager O (1969) Frequency analysis of the probe current in an RF discharge. Proc IEEE 57:227

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H. (2015). Basic Principle of Plasma Physics. In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_4

Download citation

Publish with us

Policies and ethics