Skip to main content

Abstract

PVD (physical vacuum deposition) methods are the following: [1]: Vacuum evaporation, Ion plating, Cathodic sputtering. These three techniques are also used in reactive processes for coatings with chemical compounds, as well as molecular beam epitaxy [1–5], which is a variant of vacuum evaporation. With ion implantation [6–10], one can change the properties of solid surfaces without coatings. This is not a coating process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattox DM (2010) Handbook of Physical Vapor Deposition (PVD) Processing, 2nd edn. William Andrew,

    Google Scholar 

  2. Cho JA (1971) Film Deposition by Molecular Beam Techniques. J Vac Sci Tech 8:S31–S38

    Article  Google Scholar 

  3. Cho JA (1975) Molecular Beam Epitaxy. Prog Solid-State Chem 10:157–192

    Article  Google Scholar 

  4. Sacks R, Sieg R, Ringel S (1996) Investigation of the Accuracy of Pyrometric Interferometry in Determining \(\mathrm{Al}_{x}\mathrm{Ga}_{1-x}\mathrm{As}\) Growth Rates and Compositions. J Vac Sci Tech B 12(3):2157–2162

    Article  Google Scholar 

  5. Pinsukanjana P, Jackson A, Tofte J, Maranowski K, Campbell S, English J, Chalmers S, Coldren L, Gossard A (1996) Real-time Simultaneous Optical-Based Flux Monitoring of Al, Ga, and In using Atomic Absorption for Molecular Beam Epitaxy. J Vac Sci Tech B 14(3):2147–2150

    Article  Google Scholar 

  6. Williams JS, Poate JM (eds) (1984) Ion Implantation and Beam Processing. Academic Press,

    Google Scholar 

  7. Ziegler F (1996) Ion Implantation Science and Technology. , Edgewater, USA

    Google Scholar 

  8. Hilleringmann U (2004) Silizium-Halbleitertechnologie. Teubner,

    Book  Google Scholar 

  9. Frey H (1992) Ionenstrahlgestützte Halbleitertechnologie. VDI-Verlag, Düsseldorf

    Google Scholar 

  10. Marshall A, Natarajan S (2002) SOI Design: Analog, Memory and Digital Techniques. Springer,

    Google Scholar 

  11. Burrows G (1965) Evaporation in an evacuated container. Vacuum 15(8):289–399

    Article  Google Scholar 

  12. Langmuir J (1973) The vapour pressure of metallic tungsten. Phys Rev 2(5):329–342

    Article  Google Scholar 

  13. Movcan BA, Domcisin AV, Kulak LD (1974) Structure and mechanical properties of thick Fe, Fe-NbC, Fe-Ni-NbC- condensates. J Vac Sci Technol 11:869–874

    Article  Google Scholar 

  14. Schiller, S., et al. Erfahrungen mit einem 5 kW Elektronenstrahlverdampfer, Vakuum-Technik 16 (167/ 9), pp. 205–209

    Google Scholar 

  15. Taylor RC (1974) Single source evaporation of gadolinium cobalt alloys. J Vac Sci Technol 11(6):1148–1150

    Article  Google Scholar 

  16. Oron, M.; Adams, C.M.: Controlled electron beam co-deposition of copper-nickel films J. Mater. Sci. 4 (169), pp. 252–258.

    Google Scholar 

  17. Swift RA, Noval BA, Merz KM (1968) Fractionation of Ni-Cr-Cu-Al alloys during vacuum evaporation. J Vac Sci Technol 5(3):79–83

    Article  Google Scholar 

  18. Santala T, Adams CM (1970) Kinetics and thermodynamics in continuous electron-beam evaporation of binary alloys. J Vac Sci Technol 7(6):22–29

    Article  Google Scholar 

  19. Forster JS, Pfeifer WH (1972) Vacuum deposition of alloys – theoretical and practical considerations. J Vac Sci Technol 9(6):1379–1384

    Article  Google Scholar 

  20. Andreini RJ, Forster JS (1974) Kinetics of solute removal during electron-beam and vacuum-arc melting. J Vac Sci Technol 11(6):1055–1059

    Article  Google Scholar 

  21. Hulgren C et al (1963) Selected Values of Thermodynamic Properties of Metals and Alloys. J. Wiley & Sons Inc., New York, p 732

    Google Scholar 

  22. Wagner C (1962) Thermodynamics of Alloys. Addision-Wesley, Reading, Mass., pp 15–17

    Google Scholar 

  23. Olette M (1960) Élemination sous vide des oligo-élémentes contenus dans les alliages ferreux. Mem Sci Rev Met 67(6):467–480

    Google Scholar 

  24. Richards JL (1966) Flash-evaporation. In: Anderson JC (ed) The Use of Thin Films in Physical Investigations. Academic Press, New York, pp 71–85

    Google Scholar 

  25. Harker HR, Hill RJ (1972) The deposition of multicomponent phases by ion plating. J Vac Sci Technol 9(6):1365–1399

    Article  Google Scholar 

  26. Smith HR, Kennedy K, Boericke FS (1970) Metallurgical characteristics of titanium-alloy foil prepared by electron beam evaporation. J Vac Sc Technol 7(6):48–51

    Article  Google Scholar 

  27. Krutenat RC (1974) Effect of pool temperature gradients on the compositions of electron beam vapour deposited alloys. J Vac Sci Technol 11(6):1123

    Article  Google Scholar 

  28. Stowell WR (1973) Single source evaporation of a niobium based alloy containing volatile constituents. J Vac Sci Technol 10(4):489–493

    Article  Google Scholar 

  29. Hoffmann D, Leibowitz D (1971) \(\mathrm{Al}_{2}\mathrm{O}_{3}\) Films prepared by electron beam evaporation of hot pressed \(\mathrm{Al_{2}O_{3}}\) in oxygen ambient. J Vac Sci Technol 8(1):107–111

    Article  Google Scholar 

  30. Hoffmann D, Leibowitz D (1972) Effect of substrate potential on \(\mathrm{Al_{2}O_{3}}\) films prepared by electron beam evaporation. J Vac Sci Technol 9(1):326–329

    Article  Google Scholar 

  31. Bunshab RF, Raghuran AC (1972) Activated reactive evaporation process for high rate deposition of compounds. J Vac Sci Technol 9(6):1385–1388

    Article  Google Scholar 

  32. Stowell WR (1974) Ion-plated titanium carbide coatings. Thin Solid Films 22(1):111–120

    Article  Google Scholar 

  33. Mattox DM (1973) Thin film metallization of oxides in microelectronics. Thin Solid Films 18(2):173–186

    Article  Google Scholar 

  34. Heitmann E (1972) Reaktives Aufdampfen in reaktiven Gasen. Vakuum-Technik 21(1):1–11

    Google Scholar 

  35. Ramprasad, B.S.; Rhada, T.S.: Optimum geometry for uniform deposits on a rotating substrates from a pint source Vacuum 24 (1974) 4, p. 165

    Google Scholar 

  36. Graper EB (1973) Distribution and apparent source geometrie of electron-beam-broad evaporation sources. J Vac Sci Technol 10(1):100–103

    Article  Google Scholar 

  37. Turner ME (1973) How to specify the right source to the right job. Solid State Technol 16(7):16–18

    Google Scholar 

  38. Soa EA, Persch G (1974) Die Dicke der Aufdampfschichten in ihrer Abhängigkeit von technischen Parametern. Exp Techn Phys 22(6):571–583

    Google Scholar 

  39. Erikson ED (1974) Thickness distribution of a metall – alloy from a high-rate electron beam source. J Vac Sci Technol 11(1):366–370

    Article  Google Scholar 

  40. Mulder BJ (1977) A method for the splash-free evaporation of the aluminium and other metals. Vacuum 28(1):11–12

    Article  Google Scholar 

  41. Kirner, K.: Reaktionen beim Verdampfen von Aluminium in Bornitridtiegeln, CVA (1970), pp. 64/65

    Google Scholar 

  42. Parent ED (1974) Power requirements of resistance-heated intermetallic evaporation sources. J Vac Sci Technol 11(4):820–822

    Article  Google Scholar 

  43. Dobrowolzki JA (1977) Source configurations for the deposition of uniform thin films onto a moving web. In: Proc. 7th Intern. Vac. Congr. & 3rd Intern. Conf. Solid Surfaces Vienna, pp 1567–1570

    Google Scholar 

  44. Reuter W (1976) Optimierung der Verdampferanordnung bei Bandbedampfungsanlagen. Maschinenmarkt, Würzburg 82(81):1479–1482

    Google Scholar 

  45. Warren KA, Denison PR, Bills DG (1967) Resistance heated sublimator. The Review of Scientific Instruments 38(8):1019–1022

    Article  Google Scholar 

  46. Morley JR, Smith HR (1972) High rate ion production for vacuum deposition. J Vac Sci Technol 9(6):1377–1378

    Article  Google Scholar 

  47. Burlirsch R, Stoor J (1966) Numerical treatment of ordinary differential equations by extrapolation methods. Numer Math :1–13

    Google Scholar 

  48. Schiller S et al (1967) Erfahrungen mit einem 5-kW Elektronenstrahlverdampfer. Vakuum-Technik 16(9):205–209

    Google Scholar 

  49. Hill F (1974) Evaporated aluminium films; A review of techniques and recent improvements. Airco Temescal, Berkley, Calif

    Google Scholar 

  50. Schiller, S., et al.: Industrial electron beam coating of trep steel, In: Silva, R.M.: pp. 2d1–2d28

    Google Scholar 

  51. Groeschl ME, Benes E, Schmidt E, Siegmund H, Thorn G, Thomas FW (1989) Sensor for the detection of the incident point of an electron beam. Thin Solid Films 174:323–329

    Article  Google Scholar 

  52. Scheibe H, Gorbunov AA, Baranova GK, Klassen NV, Konov VI, Kulakov MP, Prokhorov AM, Weis HJ (1990) Thin Film Deposition by Eximer Laser Evaporation. Thin Solid Films 189:283–291

    Article  Google Scholar 

  53. Coutal C, Azema A, Roustan JC (1996) Thin Solid Films. Elsevier,

    Google Scholar 

  54. Barth KL, Lunk A, Ulmer J (1997) Surface and Coatings Technology. Elsevier,

    Google Scholar 

  55. Rother BJ, Siegel J, Vetter J (1990) Cathodic Arc Evaporation of Graphite with Controlled Cathode Spot Position. Thin Solid Films 188:293–300

    Article  Google Scholar 

  56. Ehrlich H, Hasse B, Mausbach M, Müller KG (1990) The anodic vacuum arc and ist application to coating. J Vac Sci Technol A 8(3):2160–2164

    Article  Google Scholar 

  57. Mattox DM (1973) Fundamentals of ion plating. J Vac Technol 10(1):47–52

    Article  Google Scholar 

  58. Schwan J, Ulrich S, Roth H, Ehrhardt H (1996) Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. Journal of Applied Physics 79:

    Google Scholar 

  59. Schiller S, Heisig U, Goedicke K (1975) Alternating ion plating – a way to high rate ion vapour deposition. J Vac Sci Technol 12(4):858–864

    Article  Google Scholar 

  60. McLeod PS, Mah G (1974) The effect of substrate bias voltage on the bonding of vaporated silver coatings. J Vac Sci Technol 11(1):119–121

    Article  Google Scholar 

  61. Boone DH, Strangman TE, Wilson LW (1974) Some effects of structure and composition on the properties of electron beam vapour deposited coating for gas turbine superalloys. J Vac Sci Technol 11(4):641–646

    Article  Google Scholar 

  62. Bunshah RF (1974) Structure property relationships in evaporated thick films and bulk coatings. J Vac Sci Technol 11(4):633–638

    Article  Google Scholar 

  63. Berg RS, Kominiak GJ, Mattox DM (1974) Incorperation and behaviour of helium in ion deposited Films. J Vac Sci Technol 11(1):52–55

    Article  Google Scholar 

  64. Jouan PY, Lempérière G (1991) Ion energy distribution at a negatively based electrode in a sputtering discharge. Vacuum 42:927–931

    Article  Google Scholar 

  65. McNally JJ (1990) Ion assisted deposition Handbook of Plasma Processing Technology. Noyes Publications, , pp 466–482

    Google Scholar 

  66. Chambers DL, Cermichael DC (1971) Electron beam techniques for ion plating. Res And Develop 22(5):32–35

    Google Scholar 

  67. Ion assisted deposition Handbook of Plasma Processing Technology Noyes Publications (1990) pp. 466–482

    Google Scholar 

  68. Movchan BA, Demchishin AV (1969) Study of the structure and properties to thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide. Fiz Metal Metallowed 28:653–660

    Google Scholar 

  69. Thornton JA (1974) Influence of apparatus geometry and despositions conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol 11:666–670

    Article  Google Scholar 

  70. Merssier R, Giri AP, Roy RA (1984) Revised structure zone model for thin film physical structure. J Vac Sci Technol A 2:500–503

    Article  Google Scholar 

  71. McNally JJ (1990) Ion assisted deposition Handbook of Plasma Processing Technology. Noyes Publications, , pp 466–482

    Google Scholar 

  72. Riebeling I, Thoma K, Gärtner H (1985) Ion plating of copper layers on titanum: influence of preparation parameters and deformation on the residual stresses. Mater Sci Eng 69:435–444

    Article  Google Scholar 

  73. Matthews A (1985) Surface Engineering 6:93–104

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H. (2015). Vacuum Evaporation. In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_3

Download citation

Publish with us

Policies and ethics