Skip to main content
  • 5911 Accesses

Abstract

A contactless method to determine the film thickness is the eddy current method, which can be used also for in-situ analysis [1]. An alternating primary magnetic field induces electric currents, so-called eddy currents in an electrical conductor. Their magnetic field is converse to the primary field. Its intensity depends, among other things, on the electrical conductivity of the material, in which the eddy currents are induced. Over the connection of the electrical conductivity of the film with the attenuation of the primary magnetic field the film thickness can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoll RL (1974) The analysis of eddy currents. Oxford University Press,

    Google Scholar 

  2. Krawczyk, Andrzej; J. A. Tegopoulos. Numerical modelling of eddy currents.

    Google Scholar 

  3. Malik RJ (1987) Electron beam source molecular-beam-epitaxy of III-V compounds. J Vac Sci Technol V 5(3):722–724

    Article  Google Scholar 

  4. Jaffey, A. H., K. F. Flynn, L. E. Glendenin, W. C. Bentley, and A. M. Essling Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

    Google Scholar 

  5. Hegner F, Feuerstein A (1978) Aluminum-Silicon Metallization by Rate Controlled Dual EB-Gun. Solid State Technol :49–54

    Google Scholar 

  6. Hudner J, Ohlen H, Stolt L, Östling M (1990) Coevaporation thin films of Y-Ba-Cu-O utilizing Quadrupole Mass Spectrometer Rate Control. J of the Less Common Metals 164 & 165:422

    Article  Google Scholar 

  7. Lu C, Lightner MJ, Gogol CA (1977) Rate Contolling and Composition nalysis of Alloy Deposition Processes by Electron Impact Emission Spectroscopy (EIES). J Vac Sci Technol 14(1):103–107

    Article  Google Scholar 

  8. Zinner E, Crozaz G- (1986) Secondary Ion Mass Spectrometry SIMS V. Springer,

    Google Scholar 

  9. Seliger, R.L. ;  Ward, J.W. ; Wang, V. ; Kubena, R.L: A high-intensity scanning ion probe with submicrometer spot size, Applied Physics Letters  (Volume:34 ,  Issue: 5]

    Google Scholar 

  10. Livonen A, Saintola R, Valli K (1990) Ion-guide quadrupole mass spectrometer. Phys Scr 42:133

    Article  Google Scholar 

  11. Lipinsky D, Jede R, Tümpner H, Ganschow O, Benninghoven A (1985) High Sensitivity Quasisimultaneous Secondary Neutral, Secondary Ion and Residual Gas Mass Spectrometry by a new Electron Impact Postionizer. J Vac Sci Technol A 3:2035

    Article  Google Scholar 

  12. Benes E (1984) Improved quartz crystal microbalance technique. J Appl Phys 56:608–626

    Article  Google Scholar 

  13. Hertl S, Benes E, Wimmer L, Schmid M (1985) Investigation of quartz crystal thickness shear and twist modes using a new noninterferometric laser speckle measuring method \(39^{\mathrm{th}}\) Annual Frequency Control Symposium. , Philadelphia, USA, pp 535–543

    Google Scholar 

  14. Zöller A, Boos M, Herrmann R, Klug W, Lehnert W (1989) Optical Tickness Monitoring of Dielectric Optical Filters Using a New In-Situ Photometer with High Signal Resolution and Excellent Long-Term-Stability. SPIE 1019:106–112

    Google Scholar 

  15. Zöller A, Herrmann R, Klug E, Zültzke W (1986) Optical monitoring: comparison of different monitoring strategies with respect to the resulting reproducibility to the completed laser systems. SPI 652:

    Google Scholar 

  16. Herrmann R, Zöller A (1986) Automation of coating processes for the production of optical layer systems Annual Conference of China Optics Society in Guilin, China.

    Google Scholar 

  17. Stobiecki F, Stobiecki T, Kellner F, Thomas K, Röll K, Gärtner H (1991) Analysis of Ti-N Films by calibration of Ti X-ray spectra. Fresenius J Anal Chem 341:365–368

    Article  Google Scholar 

  18. Scott VD, Love G (1983) Quantitative electron-probe microanalysis. Ellis Horwood Ltd., Chichester

    Google Scholar 

  19. Karduck P, Ammann N, Esser HG, Winter J (1991) Quantitative electron probe microanalysis for the characterisation of thin carbon-boron layers in fusion devices. Fresenius J Anal Chem 341:315–319

    Article  Google Scholar 

  20. Schiller S et al (1987) The Use of a Plasma Emission Monitor for the Control of the Reactive Sputter Process. Proc. 6th Int. Conf. IPAT, Brighton, p 23

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H. (2015). Insitu Measurements. In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_11

Download citation

Publish with us

Policies and ethics