Skip to main content

Microbial Degradation of Pesticides in Tropical Soils

  • Chapter
  • First Online:
Soil Biology and Agriculture in the Tropics

Part of the book series: Soil Biology ((SOILBIOL,volume 21))

Abstract

Although their use is at least as essential in tropical as in temperate zones, pesticides remain little studied as regards their fate and microbial degradation in tropical soils. To contribute to closing this gap, this review examines to what extent results from studies on pesticide microbial degradation in temperate zones can be extrapolated to the tropics. It is concluded that geographical distances or barriers are not expected to create profound differences between tropical and temperate soil microbial communities, although fine-tuning adaptation might exist. This suggests that environmental conditions, mainly temperature and humidity, are the principal factors contributing to a difference between pesticide degradation phenomena as they occur in soils from tropical and temperate zones. According to this hypothesis, the kinetics or metabolic pathways of microbial pesticide degradation would be similar in temperate and tropical environments that would themselves be similar with respect to temperature, humidity, and other parameters. The hypothesis also predicts that in the hot humid tropics, pesticide degradation is expected to occur faster than in temperate zones, whereas in cool tropical highlands or in arid tropical zones the degradation rate would be reduced to a level comparable to or even lower than that in temperate zones. Finally, it is proposed there that pesticide degradation rate in the tropics can be predicted by models developed in temperate climates, insofar as these models have been validated as applying to tropical countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    PubMed  CAS  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Google Scholar 

  • Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiol Ecol 52:279–286

    PubMed  CAS  Google Scholar 

  • Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci USA 103:9130–9135

    PubMed  CAS  Google Scholar 

  • Alletto L, Coquet Y, Benoit P, Bergheaud V (2006) Effects of temperature and water content on degradation of isoproturon in three soil profiles. Chemosphere 64:1053–1061

    PubMed  CAS  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–80

    PubMed  Google Scholar 

  • Arbeli Z, Fuentes CL (2007) Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot 26:1733–1746

    CAS  Google Scholar 

  • Awasthi N, Ahuja R, Kumar A (2000) Factors influencing the degradation of soil-applied endosulfan isomers. Soil Biol Biochem 32:1697–1705

    CAS  Google Scholar 

  • Bailey SW (2004) Climate change and decreasing herbicide persistence. Pest Manag Sci 60:158–162

    PubMed  CAS  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    PubMed  CAS  Google Scholar 

  • Belotte D, Curien JB, Maclean RC, Bell G (2003) An experimental test of local adaptation in soil bacteria. Evolution 57:27–36

    PubMed  Google Scholar 

  • Bending GD, Lincoln SD, Sørensen SR, Morgan JAW, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl–urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl Environ Microbiol 69:827–834

    PubMed  CAS  Google Scholar 

  • Berg B et al (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationship with climate and litter quality. Biogeochemistry 20:127–159

    Google Scholar 

  • Bhat MA, Tsuda M, Horiike K, Nozaki M, Vaidyanathan CS, Nakazawa T (1994) Identification and characterization of a new plasmid carrying genes for degradation of 2, 4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol 60:307–312

    PubMed  CAS  Google Scholar 

  • Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater — a UK perspective. Sci Total Environ 369:163–177

    PubMed  CAS  Google Scholar 

  • Bocquene G, Franco A (2005) Pesticide contamination of the coastline of Martinique. Mar Pollut Bull 51:612–619

    PubMed  CAS  Google Scholar 

  • Boltner D, Moreno-Morillas S, Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338

    PubMed  CAS  Google Scholar 

  • Cáceres T, Megharaj M, Naidu R (2008) Degradation of fenamiphos in soils collected from different geographical regions: the influence of soil properties and climatic conditions. J Environ Sci Health B43:314–322

    Google Scholar 

  • Cai B, Han Y, Liu B, Ren Y, Jiang S (2003) Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 36:272–276

    PubMed  CAS  Google Scholar 

  • Cardillo M (1999) Latitude and rates of diversification in birds and butterflies. Proc R Soc Lond B 266:1221–1225

    Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    PubMed  CAS  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9:685–692

    Google Scholar 

  • Carvalho FD, Nhan D, Zhong C, Tavares T, Klaine S (1998) Tracking pesticides in the tropics. IAEA bulletin 40:24–30. http://www.iaea.org/Publications/Magazines/Bulletin/Bull403/ 40305692430.pdf. Accessed 6 Oct 2008

    Google Scholar 

  • Chen CC, McCarl BA (2001) An investigation of the relationship between pesticide usage and climate change. Clim Change 50:475–487

    Google Scholar 

  • Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5465

    PubMed  CAS  Google Scholar 

  • Cobley LS, Steele WM (1984) An introduction to the botany of tropical crops. Longman, New York

    Google Scholar 

  • Connor DJ (2008) Organic agriculture cannot feed the world. Field Crops Res 106:187–190

    Google Scholar 

  • Cook FJ, Orchard VA (2008) Relationships between soil respiration and soil moisture. Soil Biol Biochem 40:1013–1018

    CAS  Google Scholar 

  • Cooper J, Dobson H (2007) Pesticides and humanity: the benefits of using pesticides. Natural Resources Institute, University of Greenwich, UK

    Google Scholar 

  • Cuervo JL (2007) Interacción del glifosato (Roundup®) con la biota del suelo y comportamiento de este herbicida en tres suelos del Tolima-Colombia, bajo condiciones controladas. Doctoral Thesis, Facultad Agronomía, Universidad Nacional de Colombia Sede Bogotá

    Google Scholar 

  • Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69

    CAS  Google Scholar 

  • de Souza ML, Seffernick J, Martinez B, Sadowsky MJ, Wackett LP (1998) The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180:1951–1954

    PubMed  Google Scholar 

  • Dogra C et al (2004) Organization of lin genes and IS6100 among different strains of hexachlorcyclohexane degrading Sphingomonas paucimobilis strains: evidence of natural horizontal transfer. J Bacteriol 186:2225–2235

    PubMed  CAS  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    PubMed  CAS  Google Scholar 

  • Eddleston M et al (2002) Pesticide poisoning in the developing world — a minimum pesticides list. Lancet 360:1163–1167

    PubMed  Google Scholar 

  • EFSA (European Food Safety Authority) (2007) Opinion on a request from EFSA related to the default Q10 value used to describe the temperature effect on transformation rates of pesticides in soil. EFSA J 622:1–32

    Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Env Resour 30:75–115

    Google Scholar 

  • FAO (2008) — FAOSTAT, ResourceSTAT-Pesticides Trade. http://www.faostat.fao.org/site/423/default.aspx#ancor. Accessed 13 Aug 2008

  • Fenchel T (2003) Biogeography for bacteria. Science 301:295–296

    Google Scholar 

  • Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. In: Zengler K (ed) Accessing uncultivated microorganisms: From the environment to organisms and genomes and back. ASM Press, Washington, DC, pp 95–115

    Google Scholar 

  • Fierer N, Jackson R (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    PubMed  CAS  Google Scholar 

  • Fierer N, Morse J, Berthrong S, Bernhardt ES, Jackson RB (2007) Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology 88(9):2162–2173

    PubMed  Google Scholar 

  • Fierer N, Liu Z, Rodríguez-Hernández M, Knight R, Henn M, Hernandez MT (2008) Short-term temporal variability in airborne bacterial and fungal populations. Appl Environ Microbiol 74:200–207

    PubMed  CAS  Google Scholar 

  • Figueroa del Castillo L (2008) Potencial de degradación bacteriano de 14C glifosato en tres suelos del Tolima, Colombia sometidos a diferentes uso. M.Sc. Thesis, Facultad Agronomía, Universidad Nacional de Colombia Sede Bogotá

    Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    PubMed  CAS  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Freedonia Group (2005) World Pesticides to 2009 — demand and sales forecast, market share, market size, market leaders. Study no 1927

    Google Scholar 

  • Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. PNAS 105:7774–7778

    PubMed  CAS  Google Scholar 

  • Fulthorpe RR, Rhodes AN, Tiedje JM (2003) High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl Environ Microbiol 64:1620–1627

    Google Scholar 

  • Ghadiri H, Rose CW, Connell DW (1995) Degradation of organochlorine pesticides in soils under controlled environment and outdoor conditions. J Environ Manage 43:141–151

    Google Scholar 

  • Godoy-Vitorino F et al (2008) Bacterial community in the crop of the Hoatzin, a neotropical folivorous flying bird. Appl Environ Microbiol 74:5905–5912

    PubMed  CAS  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313

    PubMed  CAS  Google Scholar 

  • Graystona SJ, Griffith GS, Mawdsleyb JL, Campbella CD, Bardgettc RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33:533–551

    Google Scholar 

  • Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320(5879):1039–1043

    PubMed  CAS  Google Scholar 

  • Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477

    PubMed  Google Scholar 

  • Hassan A (1994) Appraisal of overall program accomplishments. J Environ Sci Health B29:205–226

    Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–191

    PubMed  CAS  Google Scholar 

  • Hector A et al (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    PubMed  CAS  Google Scholar 

  • Hill DS (2008) Pests of crops in warmer climates and their control. Springer, Netherlands, p 750

    Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    PubMed  Google Scholar 

  • Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615–625

    CAS  Google Scholar 

  • Jain V (1992) Disposing of pesticides in the third world. Environ Sci Technol 26:226–228

    Google Scholar 

  • Juo ASR, Franzluebbers K (2003) Tropical soils: Properties and management for sustainable agriculture. Oxford University Press, New York

    Google Scholar 

  • Karlsson H et al (2000) Persistent chlorinated pesticides in air, water, and precipitation from the Lake Malawi area, southern Africa. Environ Sci Technol 34:4490–4495

    CAS  Google Scholar 

  • Kellman MC (1997) Tropical environments: The functioning and management of tropical ecosystems. Routledge, Florence, KY

    Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    PubMed  Google Scholar 

  • Kemmitta SJ et al (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass — a new perspective. Soil Biol Biochem 40:61–73

    Google Scholar 

  • Kiely T, Donaldson D, Grube A (2004) Pesticides industry sales and usage: 2000 and 2001 market estimates. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Korpraditskul R, Korpraditskal V, Kuwatsuka S (1992) Degradation of the herbicide atrazine in five different Thai soils. J Pestic Sci 17:287–289

    Google Scholar 

  • Korpraditskul R, Katayama A, Kuwatsuka S (1993) Chemical and microbiological degradation of atrazine in Japanese and Thai soils. J Pestic Sci 18:77–83

    Google Scholar 

  • Laabs V, Amelung W, Pinto A, Zech W (2002) Fate of pesticides in tropical soils of Brazil under field conditions. J Environ Qual 31:256–268

    PubMed  CAS  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC, Büll RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic Forest. Science 312:1917

    PubMed  CAS  Google Scholar 

  • Laskowski DA (1995) EPA guidelines for environmental fate studies: meaningful data for assessing exposure to pesticides. In: Leng ML, Leovey EMK, Zubkoff PL (eds) Agrochemical environmental fate: State of the art. Lewis Publishers, Boca Raton, FL, pp 117–128

    Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150

    Google Scholar 

  • Lehman RG, Miller JR, Fontaine DD, Laskowski DD, Hunter JH, Cordes RC (1992) Degradation of a sulfonamide herbicide as a function of soil sorption. Weed Res 32:197–205

    Google Scholar 

  • Lighthart B (1984) Microbial aerosols: estimated contribution of combine harvesting to an airshed. Appl Environ Microbiol 47:430–432

    PubMed  CAS  Google Scholar 

  • Linshi J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change Biol 9:575–584

    Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440

    PubMed  CAS  Google Scholar 

  • Marchant R et al (2008) Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol 78:841–852

    PubMed  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    CAS  Google Scholar 

  • Martiny JBH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    PubMed  CAS  Google Scholar 

  • Matthews G, Wiles T, Balegue P (2003) A survey of pesticide application in Cameroon. Crop Prot 22:707–714

    CAS  Google Scholar 

  • McGowan C, Fulthorpe R, Wright A, Tiedje JM (1998) Evidence for interspecies gene transfer in the evolution of 2, 4-dichlorophenoxyacetic acid degraders. Appl Environ Microbiol 64:4089–4092

    PubMed  CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rate. Ecology 59:465–472

    CAS  Google Scholar 

  • Melgarejo Prieto MR (2008) Determinación de residuos de 14C glifosato y de AMPA en tres suelos del Tolima sometidos a diferentes uso. M.Sc. Thesis, Facultad Agronomía, Universidad Nacional de Colombia Sede Bogotá

    Google Scholar 

  • Mulbry WW, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene – relationship between the gene and protein. J Bacteriol 171:6740–6746

    PubMed  CAS  Google Scholar 

  • Naeem S, Hahn DR, Schuurman G (2000) Producer–decomposer co-dependency influences biodiversity effects. Nature 403:762–764

    PubMed  CAS  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production — losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Google Scholar 

  • Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    PubMed  CAS  Google Scholar 

  • Oliver DP, Kookana RS, Quintana B (2005) Sorption of pesticides in tropical and temperate soils from Australia and the Philippines. J Agric Food Chem 53:6420–6425

    PubMed  CAS  Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    PubMed  CAS  Google Scholar 

  • Peñafiel W, Kammerbauer H (2001) Evaluación del uso y manejo de pesticidas en una zona subtropical del Alto Beni de Bolivia. Ecología en Bolivia 36:55–63

    Google Scholar 

  • Pietikäinen J, Pettersson M, Bååth E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52:49–58

    PubMed  Google Scholar 

  • Piutti S et al (2003) Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk and maize rhizosphere soil. FEMS Microbiol Lett 221:111–117

    PubMed  CAS  Google Scholar 

  • Poelarends GJ, Kulakov LA, Larkin MJ, Vlieg JETV, Janssen DB (2000) Roles of horizontal gene transfer and gene integration in evolution of 1, 3 dichloropropene and 1, 2-dibromoethane degradative pathways. J Bacteriol 182:2191–2199

    PubMed  CAS  Google Scholar 

  • Pommier T et al (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880

    PubMed  CAS  Google Scholar 

  • Racke KD, Skidmore MW, Hamilton DJ, Unsworth JB, Miyamoto J, Cohen SZ (1997) Pesticide fate in tropical soils. Pure Appl Chem 69:1349–1371

    CAS  Google Scholar 

  • Ramette A, Tiedje J (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207

    PubMed  Google Scholar 

  • Reed HE, Martiny JBH (2007) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62:161–170

    PubMed  CAS  Google Scholar 

  • Rodríguez Cruz MS, Jones JE, Bending GD (2008) Study of the spatial variation of the biodegradation rate of the herbicide bentazone with soil depth using contrasting incubation methods. Chemosphere 73:1211–1215

    PubMed  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527

    Google Scholar 

  • Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterization of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36:211–222

    PubMed  CAS  Google Scholar 

  • Sarkar SK et al (2008) Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview. Environ Int 34:1062–1071

    PubMed  CAS  Google Scholar 

  • Satsuma K (2006) Characterisation of new strains of atrazinedegrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem. Pest Manag Sci 62:340–349

    PubMed  CAS  Google Scholar 

  • Schade G (2005) Tropical soils and agriculture: nutrients, soil organic matter, and sustainable management practices. http://www.met.tamu.edu/class/atmo613/Tropical%20Soils%20and%20Agriculture.doc. Accessed 10 Nov 2008

  • Seffernick JL, Wackett LP (2001) Rapid evolution of bacterial catabolic enzymes: a case study with atrazine chlorohydrolase. Biochemistry 40:12747–12753

    PubMed  CAS  Google Scholar 

  • Senior E, Bull T, Slater JH (1976) Enzyme evolution in a microbial community growing on herbicide Dalapon. Nature 263:476–479

    PubMed  CAS  Google Scholar 

  • Serdar CM, Murdock DC, Rohde MF (1989) Parathion hydrolase gene from Pseudomonas diminuta MG: subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli. Biotechnology 7:1151–1155

    CAS  Google Scholar 

  • Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP (2007) Evolution of catabolic pathways: genomic insights into microbial s-triazine metabolism. J Bacteriol 189:674–682

    PubMed  CAS  Google Scholar 

  • Sibanda T, Dobson HM, Cooper JF, Manyangarirwa W, Chiimba W (2000) Pest management challenges for smallholder vegetable farmers in Zimbabwe. Crop Protect 19:807–815

    Google Scholar 

  • Simon L, Spiteller M, Wallnofer PR (1992) Metabolism of fenamiphos in 16 soils originating from different geographic areas. J Agric Food Chem 40:312–317

    CAS  Google Scholar 

  • Smith LH, Liyanage JA, Watawala RC, Aravinna AGP, Kookana RS (2006) Degradation of the pesticides carbofuran and diazinon in tropical soils from Sri Lanka. CSIRO Land and Water Science Report 67/06, CSIRO, Australia

    Google Scholar 

  • Somara S, Manavathi B, Tebbe C, Siddavattam D (2002) Localisation of identical organophosphorus pesticide degrading (opd) genes on genetically dissimilar indigenous plasmids of soil bacteria: PCR amplification, cloning and sequencing of the god gene from Flavobacterium balustinum. Indian J Exp Biol 40:774–779

    PubMed  CAS  Google Scholar 

  • Specialists in Business Information (2008) Emerging trends and opportunities in the world pesticides market. Publication SB1928574

    Google Scholar 

  • Srivastava DS, Velland M (2005) Biodiversity–ecosystem function: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294

    Google Scholar 

  • Suett DL, Jukes AA, Parekh NR (1996) Non-specific influence of pH on microbial adaptation and insecticide efficacy in previously-treated field soils. Soil Biol Biochem 28:1783–1790

    CAS  Google Scholar 

  • Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D (2000a) Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl Environ Microbiol 66:2773–2782

    PubMed  CAS  Google Scholar 

  • Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000b) Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agriculture soils. Appl Environ Microbiol 66:3134–3141

    PubMed  CAS  Google Scholar 

  • Tringe SG et al (2008) The airborne metagenome in an indoor urban environment. PLOS One 3:e1862

    PubMed  Google Scholar 

  • van der Heijden MGA et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    CAS  Google Scholar 

  • Walker A (1978) Simulation of the persistence of eight soil-applied herbicides. Weed Res 18:305–313

    CAS  Google Scholar 

  • Walker A, Eagle DJ (1983) Prediction of herbicide residues in soil for advisory purposes. Asp Appl Biol 4:503–509

    Google Scholar 

  • Walker A et al (1983) EWRS herbicide-soil working group: collaborative experiment on simazine persistence in soil. Weed Res 23:373–383

    Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219

    PubMed  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301:976–978

    PubMed  CAS  Google Scholar 

  • Whitfield J (2005) Biogeography: is everything everywhere? Science 310:960–961

    PubMed  CAS  Google Scholar 

  • Whitford F, Pike D, Hanger G, Burroughs F, Johnson B, Blessing A (2006) The benefits of pesticides: a story worth telling. Purdue University, Purdue Extension, West Lafayette, IN

    Google Scholar 

  • Williamson S, Ball A, Pretty J (2008) Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot 27:1327–1334

    Google Scholar 

  • Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39:449–462

    Google Scholar 

  • Woodwell GM, Craig PP, Johnson HA (1971) DDT in the biosphere: where does it go? Science 174:1101–1107

    PubMed  CAS  Google Scholar 

  • World Resources Institute (2008) Agriculture statistics pesticide use. http://www.nationmaster.com/red/graph/agr_pes_use-agriculture-pesticide-use&int=-1. Accessed 23 Nov 2008

Download references

Acknowledgments

We are thankful to Sebastian Reinhold Sørensen, Matthew Robert Alexander and Patrice Dion for their helpful comments on the manuscript. This work was supported by the Dirección de Investigación — Sede Bogotá (DIB) and the Escuela de Posgrados, Facultad de Agronomía, Universidad Nacional de Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cilia L. Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arbeli, Z., Fuentes, C.L. (2010). Microbial Degradation of Pesticides in Tropical Soils. In: Dion, P. (eds) Soil Biology and Agriculture in the Tropics. Soil Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05076-3_12

Download citation

Publish with us

Policies and ethics