Skip to main content

The Cell Envelopes of Haloarchaea: Staying in Shape in a World of Salt

  • Chapter
  • First Online:
Prokaryotic Cell Wall Compounds

Abstract

The haloarchaea possess various cell envelope types, composed of different polymers such as S-layers, heteropolysaccharides, or glutaminylglucans. These cell wall polymers are described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Qarn M, Eichler J (2006) Protein N-glycosylation in Archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation. Mol Microbiol 61:511–525

    Article  CAS  PubMed  Google Scholar 

  • Abu-Qarn M, Yurist-Doutsch S, Giordano A, Trauner A, Morris HR, Hitchen P, Medalia O, Dell A, Eichler J (2007) Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. J Mol Biol 374:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Albers SV, Driessen AJ (2005) Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus. Microbiology 151:763–773

    Article  CAS  PubMed  Google Scholar 

  • Allers T, Ngo HP, Mevarech M, Lloyd RG (2004) Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70:943–953

    Article  CAS  PubMed  Google Scholar 

  • Anton J, Llobet-Brossa E, Rodriguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Microbiol Biotechnol 59:9–14

    Article  CAS  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the dead sea. Genome Res 14:2221–2234

    Article  CAS  PubMed  Google Scholar 

  • Benlloch S, Acinas SG, Anton J, Lopez-Lopez A, Luz SP, Rodriguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41:12–19

    CAS  PubMed  Google Scholar 

  • Blaurock AE, Stoeckenius W, Oesterhelt D, Scherfhof GL (1976) Structure of the cell envelope of Halobacterium halobium. J Cell Biol 71:1–22

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis H, te Poele E, Rodriguez-Valera F (2004) Isolation and cultivation of Walsby's square archaeon. Environ Microbiol 6:1287–1291

    Article  PubMed  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  Google Scholar 

  • Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257

    CAS  PubMed  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Cultivation of Walsby's square haloarchaeon. FEMS Microbiol Lett 238:469–473

    CAS  PubMed  Google Scholar 

  • Chew SF, Chan NK, Loong AM, Hiong KC, Tam WL, Ip YK (2004) Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. J Exp Biol 207:777–786

    Article  CAS  PubMed  Google Scholar 

  • Eichler J (2001) Post-translational modification unrelated to protein glycosylation follows translocation of the S-layer glycoprotein across the plasma membrane of the haloarchaeon Haloferax volcanii. Eur J Biochem 268:4366–4373

    Article  CAS  PubMed  Google Scholar 

  • Eichler J (2003) Facing extremes: archaeal surface-layer (glyco-) proteins. Microbiology 149:3347–3351

    Article  CAS  PubMed  Google Scholar 

  • Eichler J, Adams MWW (2005) Post-translational protein modification in archaea. Microbiol Mol Biol Rev 69:393–425

    Article  CAS  PubMed  Google Scholar 

  • Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15:1336–1343

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327:347–357

    Article  CAS  PubMed  Google Scholar 

  • Gavel Y, von Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng 3:433–442

    Article  CAS  PubMed  Google Scholar 

  • Graham DE, Overbeek R, Olsen GJ, Woese CR (2000) An archaeal genomic signature. Proc Natl Acad Sci USA 97:3304–3308

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Henderson R (1975) The structure of the purple membrane from Halobacterium halobium: analysis of the X-ray diffraction pattern. J Mol Biol 93:123–128

    Article  CAS  PubMed  Google Scholar 

  • Houwink AL (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J Gen Microbiol 15:146–150

    CAS  PubMed  Google Scholar 

  • Javor B (1984) Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol 48:352–360

    CAS  PubMed  Google Scholar 

  • Kandler O, König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The Bacteria. A treatise on structure and function. Archaebacteria, vol VIII. Academic Press, New York, pp 413–457

    Google Scholar 

  • Kandler O, König H (1993) Cell envelopes of archaea: structure and chemistry. In: Kates M, Kusher DJ, Matheson AT (eds) The biochemistry of archaea. Elsevier, Amsterdam, pp 223–259

    Chapter  Google Scholar 

  • Kandler O, König H (1998) Cell wall polymers in archaea (archaebacteria). Cell Mol Life Sci 54:305–308

    Article  CAS  PubMed  Google Scholar 

  • Kates M, Sastry PS, Yengoyan LS (1963) Isolation and characterization of a diether analog of phosphatidyl glycerophosphate from Halobacterium cutirubrum. Biochim Biophys Acta 70:705–707

    Article  CAS  PubMed  Google Scholar 

  • Kessel M, Wildehaber I, Cohen S, Baumeiser W (1988) Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead sea. EMBO J 7:1549–1554

    CAS  PubMed  Google Scholar 

  • Kikuchi A, Sagami H, Ogura K (1999) Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium. J Biol Chem 274:18011–18016

    Article  CAS  PubMed  Google Scholar 

  • Kirk RG, Ginzburg M (1972) Ultrastructure of two species of Halobacterium. J Ultrastruct Res 41:80–94

    Article  CAS  PubMed  Google Scholar 

  • Koncewicz MA (1972) Glycoproteins in the cell envelope of Halobacterium halobium. Biochem J 128:124P

    Google Scholar 

  • König H (2001) Archaeal cell walls. Encyclopedia of life sciences. DOI: 10.1038/npg.els.0000384

    Google Scholar 

  • Konrad Z, Eichler J (2002) Lipid modification of proteins in archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation. Biochem J 366:959–964

    CAS  PubMed  Google Scholar 

  • Kuntz C, Sonnenbichler J, Sonnenbichler I, Sumper M, Zeitler R (1997) Isolation and characterization of dolichol-linked oligosaccharides from Haloferax volcanii. Glycobiology 7:897–904

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    CAS  PubMed  Google Scholar 

  • Lechner J, Sumper M (1987) The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem 262:9724–9729

    CAS  Google Scholar 

  • Lechner J, Wieland F (1989) Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem 58:173–194

    Article  CAS  PubMed  Google Scholar 

  • Lechner J, Wieland F, Sumper M (1985a) Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose. Purification and identification of sulfated dolichyl monophosphoryl tetrasaccharides from halobacteria. J Biol Chem 260:860–866

    CAS  Google Scholar 

  • Lechner J, Wieland F, Sumper M (1985b) Transient methylation of dolichyl oligosaccharides is an obligatory step in halobacterial sulfated glycoprotein biosynthesis. J Biol Chem 260:8984–8989

    CAS  PubMed  Google Scholar 

  • Mengele R, Sumper M (1992) Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J Biol Chem 267:8182–8185

    CAS  PubMed  Google Scholar 

  • Mescher MF, Strominger JL (1976a) Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci USA 73:2687–2691

    Article  CAS  PubMed  Google Scholar 

  • Mescher MF, Strominger JL (1976b) Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem 251:2005–2014

    CAS  PubMed  Google Scholar 

  • Mescher MF, Strominger JL, Watson SW (1974) Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium. J Bacteriol 120:945–954

    CAS  PubMed  Google Scholar 

  • Mescher MF, Hansen U, Strominger JL (1976) Formation of lipid-linked sugar compounds in Halobacterium salinarium. Presumed intermediates in glycoprotein synthesis. J Biol Chem 251:7289–7294

    CAS  PubMed  Google Scholar 

  • Niemetz R, Karcher U, Kandler O, Tindall BJ, König H (1997) The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur J Biochem 249:905–911

    Article  CAS  PubMed  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    CAS  PubMed  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    CAS  PubMed  Google Scholar 

  • Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 138:135–140

    Article  CAS  Google Scholar 

  • Paul GF, Lottspeich F, Wieland F (1986) Asparaginyl-N-acetylgalactosamine. Linkage unit of halobacterial glycosaminoglycan. J Biol Chem 261:1020–1024

    CAS  Google Scholar 

  • Sampathkumar SG, Li A, Yarema KJ (2006) Sialic acid and the central nervous system: perspectives on biological functions, detection, imaging methods and manipulation. CNS Neurol Disord Drug Targets 5:425–440

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Steber J, Mayer H (1982) Chemical composition and structure of the cell wall of Halococcus morrhuae. Zentralbl Bakt Mikrobiol Hyg Serie C3:171–178

    Google Scholar 

  • Sheehan JK, Thornton DJ, Somerville M, Carlstedt I (1991) Mucin structure. The structure and heterogeneity of respiratory mucus glycoproteins. Am Rev Respir Dis 144:S4–S9

    CAS  Google Scholar 

  • Steber J, Schleifer KH (1975) Halococcus morrhuae: a sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch Microbiol 105:173–177

    Article  CAS  PubMed  Google Scholar 

  • Steber J, Schleifer KH (1979) N-glycyl-glucosamine: a novel constituent in the cell wall of Halococcus morrhuae. Arch Microbiol 123:209–212

    Article  CAS  Google Scholar 

  • Steensland H, Larsen H (1969) A study of the cell envelope of the halobacteria. J Gen Microbiol 55:325–336

    CAS  PubMed  Google Scholar 

  • Stoeckenius W, Rowen R (1967) A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J Cell Biol 34:365–393

    Article  CAS  PubMed  Google Scholar 

  • Sumper M (1987) Halobacterial glycoprotein biosynthesis. Biochim Biophys Acta 906:69–79

    CAS  PubMed  Google Scholar 

  • Sumper M, Berg E, Mengele R, Strobel I (1990) Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol 172:7111–7118

    CAS  PubMed  Google Scholar 

  • Tindall BJ, Ross HMN, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov. – two genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57

    Google Scholar 

  • Trachtenberg S, Pinnick B, Kessel M (2000) The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J Struct Biol 130:10–26

    Article  CAS  PubMed  Google Scholar 

  • Varki A (1998) Factors controlling the glycosylation potential of the golgi apparatus. Trends Cell Biol 8:34–40

    Article  CAS  PubMed  Google Scholar 

  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    Article  CAS  PubMed  Google Scholar 

  • Wakai H, Nakamura S, Kawasaki H, Takada K, Mizutani S, Aono R, Horikoshi K (1997) Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1. Extremophiles 1:29–35

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RS (2006) The archaea: a personal overview of the formative years. In: Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, Vol. 3: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer, Berlin, pp 3–9

    Google Scholar 

  • Yang LL, Haug A (1979) Purification and partial characterization of a procaryotic glycoprotein from the plasma membrane of Thermoplasma acidophilum. Biochim Biophys Acta 556:265–277

    Article  CAS  PubMed  Google Scholar 

  • Zeitler R, Hochmuth E, Deutzmann R, Sumper M (1998) Exchange of Ser-4 for Val, Leu or Asn in the sequon Asn-Ala-Ser does not prevent N-glycosylation of the cell surface glycoprotein from Halobacterium halobium. Glycobiology 8:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Zhu CR, Drake RR, Schweingruber H, Laine RA (1995) Inhibition of glycosylation by amphomycin and sugar nucleotide analogs PP36 and PP55 indicates that Haloferax volcanii β-glycosylates both glycoproteins and glycolipids through lipid-linked sugar intermediates. Arch Biochem Biophys 319:355–364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is supported by the Israel Science Foundation (grant 30/07), the US Air Force Office for Scientific Research (grant FA9550-07-10057) and the US Army Research Office (grant W911NF-07-1-0260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Eichler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eichler, J., Abu-Qarn, M., Konrad, Z., Magidovich, H., Plavner, N., Yurist-Doutsch, S. (2010). The Cell Envelopes of Haloarchaea: Staying in Shape in a World of Salt. In: König, H., Claus, H., Varma, A. (eds) Prokaryotic Cell Wall Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05062-6_8

Download citation

Publish with us

Policies and ethics