Skip to main content

Accumulation of Heavy Metals by Micro-organisms: Biomineralization and Nanocluster Formation

  • Chapter
  • First Online:
Prokaryotic Cell Wall Compounds

Abstract

Bacteria and archaea are the most ubiquitous organisms in terrestrial and aquatic environments. They play a major role in deposition and weathering of a large variety of minerals enriched with or consisting mainly of different metals, such as iron, manganese, copper, gold, and even radionuclides (e.g., uranium). The structure of biologically synthesized minerals is strongly influenced by the metabolic properties of the bacterial or archaeal strains involved in their production and also by the metal binding potentials of their cell wall components.

This chapter is focused on cell wall-dependent accumulation and biomineralization of iron and uranium. By using transmission electron microscopic analysis in combination with x-ray absorption and time-resolved laser-induced fluorescence spectroscopic analysis, it is demonstrated that the Gram-negative and most of the Gram-positive bacteria as well as some archaea immobilize U(VI) at their cell walls or extracellularly in a form of uranyl phosphate compounds. However, some Gram-positive bacteria which possess highly ordered proteinaceous surface layers (S-layers), immobilize U(VI) not only by phosphate groups mainly from their peptidoglycan but also by the carboxylic groups of the aspartate and glutamate stretches of their S-layers.

In addition, the cell wall-supported formation of metallic palladium nanoclusters by some bacteria is presented. Despite the different mechanisms of the biological deposition of Pd by Gram-negative and Gram-positive bacteria, the nanoparticles formed by both organisms have almost identical size and catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Lonh PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  PubMed  Google Scholar 

  • Bäuerlein E (2003) Biomineralization of unicellular organisms: unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed 42(6):615–641

    Article  Google Scholar 

  • Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Mineral Geochem 54(1):217–247

    Article  CAS  Google Scholar 

  • Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insight from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralisation. Annu Rev Microbiol 43:147–71

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ (2005) Bacterial cell wall structures and implications for interactions with metal ions and minerals. J Nucl Radiochem Sci 6(1):7–10

    CAS  Google Scholar 

  • Bonthrone KM, Quarmby J, Hewitt CJ, Allan VJM, Paterson-Beedle M, Kennedy JF, Macaskie LE (2000) The effect of the growth medium on the composition and metal binding behaviour of the extracellular polymeric material of a metal-accumulating Citrobacter sp. Environ Technol 2:123–134

    Article  Google Scholar 

  • Brown DA, Beveridge TJ, Keevil CW, Sherriff BL (1998) Evaluation of microscopic techniques to observe iron precipitation in a natural microbial biofilm. FEMS Microbiol Ecol 26:297–310

    Article  CAS  Google Scholar 

  • Chaudhuri SK, Lack JG, Goates JI (2001) Biogenic magnetite formation through anaerobic bio-oxidation of Fe (II). Appl Environ Microbiol 67:2844–2848

    Article  CAS  PubMed  Google Scholar 

  • Creamer NJ, Mikheenko IP, Yong P, Deplanche K, Sanyahumbi WDJ, Pollmann K, Merroun M, Selenska-Pobell S, Macaskie LE (2007) Novel supported Pd hydrogenation bionanocatalyst for hybrid homogeneous/heterogeneous catalysis. Catal Today 128:80–87

    Article  CAS  Google Scholar 

  • De Luca G, De Philip P, Dermoun Z, Rousset M, Vermeglio A (2001) Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl Environ Microbiol 67:4583–4587

    Article  PubMed  Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and the reactivity of catalytic Pd(0) produced Shewanella oneidensis. Antonie Van Leeuwenhoek 90:377–389

    Article  CAS  PubMed  Google Scholar 

  • DiChristina T, Moore CM, Haller CA (2002) Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. J Bacteriol 184:142–151

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Article  CAS  Google Scholar 

  • Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth-Sci Rev 45:45–60

    Article  CAS  Google Scholar 

  • Elias DA, Suflita JM, McInerney MJ, Krumholz LR (2004) Periplasmic cytochrome C3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulphate reduction. Appl Environ Microbiol 70:413–420

    Article  CAS  PubMed  Google Scholar 

  • Fahmy K, Merroun M, Raff J, Pollmann K, Hennig Ch, Savchuk O, Selenska-Pobell S (2006) Secondary structure and Pd(II) co-ordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy. Biophys J 91:996–1007

    Article  CAS  PubMed  Google Scholar 

  • Finneran KT, Housewright ME, Lovley DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516

    Article  CAS  PubMed  Google Scholar 

  • Fortin D, Davis B, Beveridge TJ (1996) Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol Ecol 21:11–24

    Article  CAS  Google Scholar 

  • Francis AL, Gillow JB, Dodge CJ, Harris R, Beveredge TJ, Papenguth HW (2004) Uranium association with halophilic and non-halophilic bacteria and archaea. Radiochim Acta 92:481–488

    Article  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54(1):95–114

    Article  CAS  Google Scholar 

  • Gehrke T, Telegi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  PubMed  Google Scholar 

  • Geissler A (2007) Prokaryotic micro-organisms in uranium mining waste piles and their interactions with uranium and other heavy metals. PhD Thesis. TU Bergakademie Freiberg, Freiberg, Germany

    Google Scholar 

  • Geissler A, Selenska-Pobell S (2005) Behavior of U(VI) added to a uranium mining waste pile sample and the resulting changes in the indigenous bacterial community. Geobiology 3:275–285

    Article  CAS  Google Scholar 

  • Geissler A, Merroun M, Geipel G, Reuther H, Selenska-Pobell S (2009) Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions. Geobiology 7:282–294

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Landley S, Beveridge TJ (2001) Sorption of Fe(hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine grained minerals are not always formed de novo. Appl Environ Microbiol 67:5544–5550

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Landley S, Beveridge TJ (2002) Intracellular iron minerals in a dissimilatory iron reducing bacterium. Science 295(4):117–119

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Landley S, Boyanov M, Lai B, Kemner K, Beveridge TJ (2007) Mixed valence cytoplasmic iron granules are linked to anaerobic respiration. Appl Environ Microbiol 73:993–996

    Article  CAS  PubMed  Google Scholar 

  • Hanert HH (2006) The genus Siderocapsa (and other iron- and manganese-oxidizing Eubacteria). In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 1005–1015

    Chapter  Google Scholar 

  • Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, Chang Y-J, White DC (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38:468–475

    Article  CAS  PubMed  Google Scholar 

  • Jroundi F, Merroun M, Arias JM, Rossberg A, Selenska-Pobell S, Gonzalez-Munoz MT (2007) Spectroscopic and microscopic characterization of uranium biomineralization by Myxococcus xanthus. Geomicrobiol J 24:441–449

    Article  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley D (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279

    Article  CAS  PubMed  Google Scholar 

  • Kashefi K, Shelobolina ES, Elliot WC, Lovley DR (2008) Growth of thermophilic and hyperthermophilic Fe(III)-reducing micro-organisms on a ferruginous smectite as a sole electron acceptor. Appl Environ Microbiol 74:251–258

    Article  CAS  PubMed  Google Scholar 

  • Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N (2002) X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions. Geochim Cosmochim Acta 65:3855–3871

    Article  Google Scholar 

  • Koban A, Geipel G, Roßberg A, Bernhard G (2004) Uranyl (VI) complexes with sugar phosphates in aqueous solution. Radiochim Acta 92:903–908

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microb Rev 27:411–425

    Article  CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie L (1998) Enzymatic recovery of elemental palladium by using sulphate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    CAS  PubMed  Google Scholar 

  • Lovley DR (1993) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    Google Scholar 

  • Lovley DR (2002) Dissimilatory metal reduction: from early life to bioremediation. ASM News 68(5):231–237

    Google Scholar 

  • Lovley DR, Phillips GYA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  CAS  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips EJP (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    CAS  PubMed  Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Grey CP, Scarnulis AJ (1992) Uranium bioaccumulation by Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  CAS  PubMed  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddart DT (2000) Enzymatically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    CAS  PubMed  Google Scholar 

  • Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheenko PM, Penfold DW, Yong P (2005) Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33:76–79

    Article  CAS  PubMed  Google Scholar 

  • Marqués AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado F (1991) Uranium accumulation by Pseudomonas sp. ESP-5028. Appl Microbiol Biotechnol 35:406–410

    Article  Google Scholar 

  • Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner K, McLean JS, Reed SB, Culley DE, Bailey VL, Simonson CJ, Saffarini DA, Romine MF, Zachara JM, Fredrickson JK (2006) C-type cytochrome-dependent formation of U(VI) nanoparticles by Shewanella onediensis. PLos 4(8):1324–1333

    CAS  Google Scholar 

  • Martinez RJM, Beazley J, Teillefert M, Arakaki AK, Skolnick J, Sobecky PA (2007) Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9:3122–3133

    Article  CAS  PubMed  Google Scholar 

  • Merroun M, Selenska-Pobell S (2001) Interactions of three eco-types of Acidithiobacillus ferrooxidans strains with U(VI). BioMetals 14:171–179

    Article  CAS  PubMed  Google Scholar 

  • Merroun M, Hennig C, Rosberg A, Geipel G, Reich T, Selenska-Pobell S (2002) Molecular and atomic analysis of uranium complexes formed by three eco-types of Acidithiobacillus ferrooxidans. Biochem Soc Trans 30:669–672

    Article  CAS  PubMed  Google Scholar 

  • Merroun M, Hennig C, Rossberg A, Reich T, Selenska-Pobell S (2003) Characterization of U(VI)-Acidithiobacillus ferrooxidans complexes using EXAFS, transmission electron microscopy, and energy-dispersive X-ray analysis. Radiochim Acta 91:583–592

    Article  CAS  Google Scholar 

  • Merroun M, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543

    Article  CAS  PubMed  Google Scholar 

  • Merroun M, Nedelkova M, Rossberg A, Hennig C, Selenska-Pobell S (2006) Interaction mechanisms of bacteria from extreme habitats with uranium as a function of pH. Radiochim Acta 94:723–729

    Article  CAS  Google Scholar 

  • Merroun ML, Nedelkova M, Ojeda, J Hennig C, Rossberg A, Romero-Gonzalez M, Selenska-Pobell S (2008) Bio-precipitation of uranium by natural bacterial isolates: a combined potentiometric titration, TEM and X-ray absorption spectroscopy study. FEMS Microbiol Ecol (In press)

    Google Scholar 

  • Nedelkova M, Merroun ML, Rossberg A, Hennig C, Selenska-Pobell S (2007) Microbacterial isolates from the vicinity of a radioactive waste depository and their interactions with uranium. FEMS Microbiol Ecol 59:694–705

    Article  CAS  PubMed  Google Scholar 

  • Nevin KP, Finneran KT, Lovley DR (2003) Micro-organisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69:3672–3675

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Nyman JL, Marsh TL, Ginder-Vogel MA, Gentile M, Fendorf S, Criddle C (2006) Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Biodegradation 17:303–316

    Article  CAS  PubMed  Google Scholar 

  • Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE (2003) Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl Environ Microbiol 69:7467–7479

    Article  CAS  PubMed  Google Scholar 

  • Pollmann K, Raff J, Schnorpfeil M, Radeva G, Selenska-Pobell S (2005) Novel surface layer protein genes in Bacillus sphaericus associated with unusual insertion elements. Microbiology 151:2961–2973

    Article  PubMed  Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Mikheenko I, Selenska-Pobell S (2006) Bacteria from uranium mining waste piles and their technological applications. Biotechnol Adv 24:58–68

    Article  CAS  PubMed  Google Scholar 

  • Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mater 15:240–244

    Article  CAS  Google Scholar 

  • Redwood MD, Deplanche K, Baxter-Plant VS, Macaskie LE (2007) Biomass-supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides. Biotechnol Bioengin. DOI: On line publication: 10.1002/bit.21689

    Google Scholar 

  • Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412

    Article  CAS  PubMed  Google Scholar 

  • Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapelton RD, Moon J-W, Phels TJ, Fredricson JK, Zhou J (2006) Metal reduction and iron iomineralization by a psychrotolerant Fe(III)-reducing bacterium, Shewanella sp. strain PV-4. Appl Environ Microbiol 72:3236–3244

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004) Highly phosphorylated bacterial proteins. Proteomics 4:3068–3077

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Lam S, Harauz G, Beveridge TJ (1992) Participation of a cyanobacterial S-layer in fine-grain mineral formation. J Bacteriol 174:7971–7981

    Google Scholar 

  • Selenska-Pobell S (2002) Diversity and activity of bacteria in uranium waste piles. In: Keith-Roach MJ, Livens FR (eds) Interactions of micro-organisms with radionuclides. Elsevier Sciences Ltd, Oxford, UK, pp 225–254

    Chapter  Google Scholar 

  • Selenska-Pobell S, Miteva V, Boudakov I, Panak P, Bernhard G, Nitsche H (1999) Selective accumulation of heavy metals by three indigenous Bacillus isolates, B. cereus, B. megaterium and B. sphaericus in drain waters from a uranium waste pile. FEMS Microbiol Ecol 29:59–67

    Article  CAS  Google Scholar 

  • Sillitoe RH, Folk RL, Saric N (1996) Bacteria as mediators of copper sulfide enrichment during weathering. Science 272:1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sára MRG (1996) Crystalline bacterial cell surface proteins. Academic Press, Landes Company

    Google Scholar 

  • Suzuki Y, Banfield JF (2004) Resistance to and accumulation of uranium by bacteria from a uranium-contaminated site. Geomicrobiol J 21:113–121

    Article  CAS  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2003) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Urrutia Mera M, Kemper M, Doyle R, Beveridge TJ (1992) The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Appl Environ Microbiol 58:3834–3844

    Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    Article  CAS  PubMed  Google Scholar 

  • Wahl R, Mertig M, Raff J, Selenska-Pobell S, Pompe W (2001) Electron-beam induced formation of highly ordered palladium and platinum nanoparticle arrays on the S-layer of Bacillus sphaericus NCTC 9602. Adv Mater 13:736–740

    Article  CAS  Google Scholar 

  • Wan J, Tokunaga TK, Brodie E, Wang Z, Zheng Z, Herman D, Hazen TC, Firestone MK, Sutton SR (2005) Reoxidation of bioreduced uranium under reducing conditions. Environ Sci Technol 39:6162–6169

    Article  CAS  PubMed  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LM (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Selenska-Pobell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Selenska-Pobell, S., Merroun, M. (2010). Accumulation of Heavy Metals by Micro-organisms: Biomineralization and Nanocluster Formation. In: König, H., Claus, H., Varma, A. (eds) Prokaryotic Cell Wall Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05062-6_17

Download citation

Publish with us

Policies and ethics