Skip to main content

Advances in Detection and Identification of Wood Rotting Fungi in Timber and Standing Trees

  • Chapter
  • First Online:
Molecular Identification of Fungi

Abstract

Wood rotting fungi are reported as a major source of economic losses in both timber production and wood in service, and one of the main causes of tree wind throws and limb failures. Since the biology of these fungi is varied, their detection and identification are important for the application of appropriate management strategies and control measures. Following an overview of traditional and biochemical diagnostic techniques, whose usefulness is frequently limited either by their reliance on the sporadically emerging and rarely visible fruit bodies, or by the need of a preliminary isolation step, we discuss on DNA-based techniques that have been developed to detect and early identify wood rotting fungi in timber and in standing trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allmér J, Vasiliauskas R, Ihrmark K, Stenlid J, Dahlberg A (2006) Wood-inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T-RFLP identification. FEMS Microbiol Ecol 55:57–67

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amenduni T, Bazzoni A, Romanazzi G, Cariddi C, Vovlas N, Trisciuzzi N, Schena L, Potere O, Finetti-Sialer M, Myrta A (2001) Distribuzione dei patogeni delle drupacee in Puglia. Atti progetto PM A32 – Norme fitosanitarie e commercializzazione delle produzioni vivaistiche, Locorotondo, Bari, Italy, pp 143–179

    Google Scholar 

  • Anderson JB (1986) Biological species of Armillaria in North America: redesignation of groups IV and VIII and enumeration of voucher strains for other groups. Mycologia 78:837–839

    Google Scholar 

  • Anselmi N, Giorcelli A (1990) Factors influencing the incidence of Rosellinia necatrix Prill. in poplars. Eur J Forest Pathol 20:175–183

    Google Scholar 

  • Anderson JB, Bailey SS, Pukkila PJ (1989) Variation in ribosomal DNA among biological species of Armillaria, a genus of root-infecting fungi. Evolution 43:1652–1662

    CAS  Google Scholar 

  • Bahnweg G, Möller EM, Anegg S, Langebartels C, Wienhaus O, Sandermann H Jr (2002) Detection of Heterobasidion annosum s.l. [(Fr.) Bref.] in Norway spruce by polymerase chain reaction. J Phytopathol 150:382–389

    CAS  Google Scholar 

  • Bahnweg G, Schulze S, Moller EM, Rosenbrock H, Langebartels C, Sandermann H (1998) DNA isolation from recalcitrant materials such as tree roots, bark, and forest soil for the detection of fungal pathogens by polymerase chain reaction. Anal Biochem 262:79–82

    PubMed  CAS  Google Scholar 

  • Bech-Andersen J (1995) The dry rot fungus and other fungi in houses. Hussvamp Laboratoriet, Holte, Denmark

    Google Scholar 

  • Bernicchia A (2005) Polyporaceae s.l. Ed. Candusso, Alassio, Italy, p 808

    Google Scholar 

  • Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398

    CAS  Google Scholar 

  • Bravery AF, Berry RW, Carey JK, Cooper DE (2003) Recognising wood rot and insect damage in buildings, 2nd edn. Building Research Establishment, Watford

    Google Scholar 

  • Breitenbach J, Kränzlin F (1986) Champignons de Suisse, Champignons sans Lames, vol 2. Mykologia, Luzern, p 412

    Google Scholar 

  • Bruns TD, Shefferson RP (2004) Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. Can J Bot 82:1122–1132

    CAS  Google Scholar 

  • Camacho FJ, Gernandt DS, Liston A, Stone JK, Klein AS (1997) Endophytic fungal DNA, the source of contamination in spruce needle DNA. Mol Ecol 6:983–987

    CAS  Google Scholar 

  • Campanile G, Schena L, Luisi N (2008) Real-time PCR identification and detection of Fuscoporia torulosa in Quercus ilex. Plant Pathol 57:76–83

    CAS  Google Scholar 

  • Chase TE, Ullrich RC (1988) Heterobasidion annosum, root- and butt-rot of trees. Adv Plant Pathol 6:501–510

    Google Scholar 

  • Chillali M, Wipf D, Guillaumin JJ, Mohammed C, Botton B (1998) Delineation of the European Armillaria species based on the sequences of the internal transcribed spacer (ITS) of ribosomal DNA. New Phytol 138:553–561

    CAS  Google Scholar 

  • Clausen CA (1997) Immunological detection of wood decay fungi – an overview of techniques developed from 1986 to the present. Int Biodeter Biodegrad 39:133–143

    Google Scholar 

  • Clausen CA, Kartal SN (2003) Accelerated detection of brown-rot decay: comparison of soil block test, chemical analysis, mechanical properties, and immunodetection. Forest Prod J 53:90–94

    CAS  Google Scholar 

  • Deflorio G, Johnson C, Fink S, Schwarze FWMR (2008) Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. Forest Ecol Manag 255:2373–2383

    Google Scholar 

  • Delatour C (1980) Le Fomes annosus (Fr.) Cke. en Europe de l'ouest: importance economique, orientation des recherches. In: Dimitri L (Ed.) Proceedings of the 5th International Conference on problems of root and butt rots in conifers, August 7-12, 1978, Kassel, F.R.G., Germany, pp 9–18

    Google Scholar 

  • Edel-Hermann W, Dreumont C, Perez-Piqueres A, Steinberg C (2004) Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol 47:397–404

    PubMed  CAS  Google Scholar 

  • Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE (2000) Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 13:559–570

    PubMed  CAS  Google Scholar 

  • Erkkilä R, Niemelä T (1986) Polypores in the parks and forests of the City of Helsinki. Karstenia 26:1–40

    Google Scholar 

  • Fischer M, Wagner T (1999) RFLP analysis as a tool for identification of lignicolous basidiomycetes: European polypores. Eur J Forest Pathol 29:295–304

    Google Scholar 

  • Garbelotto M, Bruns TD, Cobb FW, Otrosina WJ (1993) Differentiation of intersterility groups and geographic provenances among isolates of Heterobasidion annosum detected by random amplified polymorphic DNA assays. Can J Bot 71:565–569

    Google Scholar 

  • Garbelotto M, Otrosina WJ, Cobb FW, Bruns TD (1998) The European S and F intersterility groups of Heterobasidion annosum may represent sympatric protospecies. Can J Bot 76:397–409

    CAS  Google Scholar 

  • Garbelotto M, Ratcliff A, Bruns TD, Cobb FW, Otrosina WJ (1996) Use of taxon-specific competitive-priming PCR to study host specificity, hybridization, and intergroup gene flow in intersterility groups of Heterobasidion annosum. Phytopathology 86:543–551

    CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    PubMed  CAS  Google Scholar 

  • Germain H, Laflamme G, Bernier L, Boulet B, Hamelin RC (2002) DNA polymorphism and molecular diagnosis in Inonotus spp. Can J Plant Pathol 24:194–199

    CAS  Google Scholar 

  • Gilbertson RL, Ryvarden L (1987) Megasporoporia –Wrightoporia, North American Polypores. Fungiflora, Oslo, Norway, pp 437–885

    Google Scholar 

  • Glen M, Potter K, Sulistyawati P (2006) Molecular identification of organisms associated with root and heart rot in Acacia mangium. In: Potter, K., Rimbawanto, A. and Beadle, C. ed., Heart rot and root rot in tropical Acacia plantations. Canberra. ACIAR Proc 124:55–59

    Google Scholar 

  • Göller K, Rudolph D (2003) The need for unequivocally defined reference fungi-genomic variation in two strains named as Coniophora puteana BAM Ebw. 15. Holzforschung 57:456–458

    Google Scholar 

  • Gonthier P, Garbelotto M, Nicolotti G (2003) Swiss stone pine trees and spruce stumps represent an important habitat for Heterobasidion spp. in subalpine forests. Forest Pathol 33:191–203

    Google Scholar 

  • Gonthier P, Garbelotto M, Varese GC, Nicolotti G (2001) Relative abundance and potential dispersal range of intersterility groups of Heterobasidion annosum in pure and mixed forests. Can J Bot 79:1057–1065

    CAS  Google Scholar 

  • Gonthier P, Garbelotto MM, Nicolotti G (2005) Seasonal patterns of spore deposition of Heterobasidion species in four forests of the Western Alps. Phytopathology 95:759–767

    PubMed  Google Scholar 

  • Gonthier P, Nicolotti G (2007) A field key to identify common wood decay fungal species on standing trees. Arboric Urban For 33:410–420

    Google Scholar 

  • Gonthier P, Nicolotti G, Linzer R, Guglielmo F, Garbelotto M (2007) Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon. Mol Ecol 16:1389–1400

    PubMed  CAS  Google Scholar 

  • Gonthier P, Warner R, Nicolotti G, Mazzaglia A, Garbelotto MM (2004) Pathogen introduction as a collateral effect of military activity. Mycol Res 108:468–470

    PubMed  Google Scholar 

  • Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K (2002) Identification of a prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1 spacer characterization. Mycol Res 106:435–443

    CAS  Google Scholar 

  • Guglielmo F (2005) A molecular approach for the detection and early identification of wood rotting fungi as useful tool in tree stability assessment, Ph.D. Thesis in Microbial Biotechnology, University of Florence, Florence, Italy, pp 131

    Google Scholar 

  • Guglielmo F, Bergemann SE, Gonthier P, Nicolotti G, Garbelotto M (2007) A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees. J Appl Microbiol 103:1490–1507

    PubMed  CAS  Google Scholar 

  • Guglielmo F, Bergemann SE, Gonthier P, Nicolotti G, Garbelotto M (2008a) In: Garbelotto M, Gonthier, P (Eds.) Proceedings of the 12th International Conference on Root and Butt Rots of Forest Trees, Berkeley-California and Medford-Oregon, August 12–19, 2007. The University of California, Berkeley, USA, pp 196-200

    Google Scholar 

  • Guglielmo F, Gonthier P, Garbelotto M, Nicolotti G (2008b) A PCR-based method for the identification of important wood rotting fungal taxa within Ganoderma, Inonotus s.l. and Phellinus s.l. FEMS Microbiol Lett 282:228–237

    PubMed  CAS  Google Scholar 

  • Guillaumin JJ, Lung B, Romagnesi H, Marxmüller H, Lamoure D, Durrieu G (1985) Systematics of the Armillaria mellea complex. Phytopathological consequences. Eur J Forest Pathol 15:268–277

    Google Scholar 

  • Habermehl A, Ridder HW, Seidl P (1999) Computerized tomographic systems as tools for diagnosing urban tree health. Acta Hortic 496:261–268

    Google Scholar 

  • Hansen EM, Goheen EM (2000) Phellinus weirii and other native root pathogens as determinants of forest structure and process in Western North America. Annu Rev Phytopathol 38:515–539

    PubMed  CAS  Google Scholar 

  • Hantula J, Vainio E (2003) Specific primers for the differentiation of Heterobasidion annosum (s.str.) and H. parviporum infected stumps in Northern Europe. Silva Fenn 37:181–187

    Google Scholar 

  • Harrington TC, Wingfield BD (1995) A PCR-based identification method for species of Armillaria. Mycologia 87:280–288

    Google Scholar 

  • Harrington TC, Worrall JJ, Rizzo DM (1989) Compatibility among host-specialized isolates of Heterobasidion annosum from western North America. Phytopathology 79:290–296

    Google Scholar 

  • Hickman GW, Perry EJ (1997) Ten common wood decay fungi on landscape trees-Identification handbook. Western Chapter, ISA, Sacramento

    Google Scholar 

  • Hietala AM, Eikenes M, Kvaalen H, Solheim H, Fossdal CG (2003) Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Appl Environ Microbiol 69:4413–4420

    PubMed  CAS  Google Scholar 

  • Hjortstam K, Larsson KH, Ryvarden L (1978) The corticiaceae of North Europe, vol 1. Fungiflora, Oslo, Norway, p 60

    Google Scholar 

  • Högberg N, Land CJ (2004) Identification of Serpula lacrymans and other decay fungi in construction timber by sequencing of ribosomal DNA – a practical approach. Holzforschung 58:199–204

    Google Scholar 

  • Hong S, Jeong W, Jung H (2002) Amplification of mitochondrial small subunit ribosomal DNA of polypores and its potential for phylogenetic analysis. Mycologia 94:823–833

    PubMed  CAS  Google Scholar 

  • Hong S, Jung H (2004) Phylogenetic analysis of Ganoderma based on nearly complete mitochondrial small-subunit ribosomal DNA sequences. Mycologia 96:742–755

    PubMed  Google Scholar 

  • Huckfeldt T, Schmidt O (2006) Identification key for European strand-forming house-rot fungi. Mycologist 20:42–56

    Google Scholar 

  • Intini M, Panconesi A, Parrini C (2000) Malattie delle Alberature in Ambiente Urbano. CNR-IPAF, Florence, Italy, p 216

    Google Scholar 

  • Jahnke KD, Bahnweg G, Worrall JJ (1987) Species delimitation in the Armillaria mellea complex by analysis of nuclear and mitochondrial DNAs. Trans Br mycol Soc 88:572–575

    Google Scholar 

  • Jasalavich CA, Ostrofsky A, Jellison J (2000) Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA. Appl Environ Microbiol 66:4725–4734

    PubMed  CAS  Google Scholar 

  • Jellison J, Goodell B (1988) Immunological detection of decay in wood. Wood Sci Technol 22:293–297

    CAS  Google Scholar 

  • Jellison J, Goodell B (1989) Inhibitory effects of undecayed wood and the detection of Postia placenta using the enzyme-linked immunosorbent assay. Wood Sci Technol 23:13–20

    Google Scholar 

  • Jellison J, Howell C, Schilling J, Goodell B, Quarles S (2004) Investigations into the biology of Meruliporia incrassata. In: International Research Group on Wood Preservation, IRG/WP Series Document 04-10508

    Google Scholar 

  • Johannesson H, Stenlid J (1999) Molecular identification of wood-inhabiting fungi in an unmanaged Picea abies forest in Sweden. Forest Ecol Manage 115:203–211

    Google Scholar 

  • Johannesson H, Stenlid J (2003) Molecular markers reveal genetic isolation and phylogeography of the S and F intersterility groups of the wood-decay fungus Heterobasidion annosum. Mol Phylogenet Evol 29:94–101

    PubMed  CAS  Google Scholar 

  • Karjalainen R (1996) Genetic relatedness among strains of Heterobasidion annosum as detected by random amplified polymorphic DNA markers. J Phytopathol 144:399–404

    Google Scholar 

  • Kasuga T, Mitchelson KR (2000) Intersterility group differentiation in Heterobasidion annosum using ribosomal IGS1 region polymorphism. Forest Pathol 30:329–344

    Google Scholar 

  • Kasuga T, Woods C, Woodward S, Mitchelson K (1993) Heterobasidion annosum 5.8s ribosomal DNA and internal transcribed spacer sequence: rapid identification of European intersterility groups by ribosomal DNA restriction polymorphism. Curr Genet 24:433–436

    PubMed  CAS  Google Scholar 

  • Kennedy N, Clipson N (2003) Fingerprinting the fungal community. Mycologist 17:158–164

    Google Scholar 

  • Khairudin H (1995) Basal stem rot of oil palm caused by Ganodema boninense. In: PORIM International Palm Oil Congress: update and vision (Agriculture), 20–25 September 1993, Kuala Lumpur, Malaysia, pp 739–749

    Google Scholar 

  • Kile GA, McDonald GI, Byler JW (1991) Ecology and disease in natural forests. In: Shaw CG, Kile GA (eds) Armillaria root disease. Washington D.C, USDA Forest Service, pp 102–121

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers J (2001) Ainsworth and Bisby's dictionary of the fungi, 9th edn. CAB International, Wallingford, UK, p 655

    Google Scholar 

  • Kleist G, Seehann G (1999) Der Eichenporling, Donkioporia expansa, ein wenig bekannter Holzzerstörer in Gebäuden. Z Mykol 65:23–32

    Google Scholar 

  • Ko K, Jung H (1999) Phylogenetic re-evaluation of Trametes consors based on mitochondrial small subunit ribosomal DNA sequences. FEMS Microbiol Lett 170:181–186

    PubMed  CAS  Google Scholar 

  • Korhonen K (1978) Intersterility groups of Heterobasidion annosum. Commun Inst Forest Fenn 94:1–25

    Google Scholar 

  • Korhonen K, Stenlid J (1998) Biology of Heterobasidion annosum. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, Oxon, UK, pp 43–70

    Google Scholar 

  • Larsson E, Larsson KH (2003) Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia 95:1037–1065

    PubMed  CAS  Google Scholar 

  • Lee LG, Connell CR, Bloch W (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21:3761–3766

    PubMed  CAS  Google Scholar 

  • Lee SS (2000) The current status of root diseases of Acacia mangium Willd. Ganoderma diseases of perennial crops. CAB International, Wallingford, Oxon, UK, pp 71–79

    Google Scholar 

  • Lim YW, Yeung YCA, Sturrock R, Leal I, Breuil C (2005) Differentiating the two closely related species, Phellinus weirii and P. sulphurascens. Forest Pathol 35:305–314

    Google Scholar 

  • Linzer RE, Otrosina WJ, Gonthier P, Bruhn J, Laflamme G, Bussieres G, Garbelotto M (2008) Inferences on the phylogeography of the fungal pathogen Heterobasidion annosum, including evidence of interspecific horizontal genetic transfer and of human-mediated, long-range dispersal. Mol Phylogenet Evol 46:844–862

    PubMed  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • Lochman J, Sery O, Mikes V (2004) The rapid identification of European Armillaria species from soil samples by nested PCR. FEMS Microbiol Lett 237:105–110

    PubMed  CAS  Google Scholar 

  • Lombard FF, Chamuris GP (1990) Basidiomycetes. In: Wang CJK, Zabel RA (eds) Identification manual for fungi from utility poles in the eastern United States. American Type Culture Collection, Rockville, USA, pp 21–104

    Google Scholar 

  • Lonsdale D (1999) Principles of tree hazard assessment and management. Forestry Commission, London, UK, pp 388

    Google Scholar 

  • Matsushita N, Suzuki K (2005) Identification of Armillaria species in Japan using PCR-RFLP analysis of rDNA intergenic spacer region and comparisons of Armillaria species in the world. J Forest Res 10:173–179

    Google Scholar 

  • Mattheck C, Breloer H (1992) Tree monitoring with VTA – visual tree assessment. Baumkontrollen mit VTA visual tree assessment. Gartenamt 41:777–784

    Google Scholar 

  • Mattheck C, Breloer H (1995) The body language of trees: a handbook for failure analysis, Research for Amenity Trees 4. HMSO, London, p 240

    Google Scholar 

  • Moreth U, Schmidt O (2000) Identification of indoor rot fungi by taxon-specific priming polymerase chain reaction. Holzforschung 54:1–8

    CAS  Google Scholar 

  • Moreth U, Schmidt O (2005) Investigations on ribosomal DNA of indoor wood decay fungi for their characterization and identification. Holzforschung 59:90–93

    CAS  Google Scholar 

  • Möykkynen T, Miina J (2002) Optimizing the management of a butt-rotted Picea abies stand infected by Heterobasidion annosum from the previous rotation. Scand J Forest Res 17:47–52

    Google Scholar 

  • Müller U, Bammer R, Halmschlager E, Stollberger R, Wimmer R (2001) Detection of fungal wood decay using magnetic resonance imaging. Holz Roh Werkst 59:190–194

    Google Scholar 

  • Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnostics – new solutions for old problems. Eur J Plant Pathol 116:1–19

    CAS  Google Scholar 

  • Nicolotti G, Gonthier P (2005) Stump treatment against Heterobasidion with Phlebiopsis gigantea and some chemicals in Picea abies stands in the western Alps. Forest Pathol 35:365–374

    Google Scholar 

  • Nicolotti G, Gonthier P, Guglielmo F, Garbelotto M (2009) A biomolecular method for the detection of wood decay fungi: a focus on tree stability assessment. Arboric Urban For 35:14–19

    Google Scholar 

  • Nicolotti G, Gonthier P, Pecollo D (2004a) Ecologia e grado di preferenza d’ospite dei funghi agenti di carie/I parte. Acer 1:47–51

    Google Scholar 

  • Nicolotti G, Gonthier P, Pecollo D (2004b) Ecologia e grado di preferenza d’ospite dei funghi agenti di carie/II parte. Acer 2:59–67

    Google Scholar 

  • Nicolotti G, Socco LV, Martinis R, Godio A, Sambuelli L (2003) Application and comparison of three tomographic techniques for detection of decay in trees. J Arboric 29:66–78

    Google Scholar 

  • Nobles MK (1965) Identification of cultures of wood-inhabiting hymenomycetes. Can J Bot 43:1097–1139

    Google Scholar 

  • Oh SK, Kamdem DP, Keathley DE, Han KH (2003) Detection and species identification of wood-decaying fungi by hybridization of immobilized Sequence-Specific Oligonucleotide Probes with PCR-amplified fungal ribosomal DNA internal transcribed spacers. Holzforschung 57:346–352

    CAS  Google Scholar 

  • Otrosina WJ, Chase TE, Cobb FW Jr (1992) Allozyme differentiation of intersterility groups of Heterobasidion annosum isolated from conifers in the western United States. Phytopathology 82:540–545

    CAS  Google Scholar 

  • Otrosina WJ, Chase TE, Cobb FW Jr, Korhonen K (1993) Population structure of Heterobasidion annosum from North America and Europe. Can J Bot 71:1064–1071

    Google Scholar 

  • Palfreyman JW, Bruce A, Button D, Glancy H, Vigrow A, King B (2001) Immunological methods for the detection and characterisation of wood decay basidiomycetes. Int Biodeter Biodegr 48:74–78

    Google Scholar 

  • Palfreyman JW, Vigrow A, King B (1991) Molecular identification of fungi causing rot of building timbers. Mycologist 5:73–77

    Google Scholar 

  • Pegler DN (2000) Taxonomy, nomenclature and description of Armillaria. In: Fox RTV (ed) Armillaria root rot: biology and control of honey fungus. Intercept, Andover, pp 81–93

    Google Scholar 

  • Piri T (1996) The spreading of the S type of Heterobasidion annosum from Norway spruce stumps to the subsequent tree stand. Eur J Forest Pathol 26:193–204

    Google Scholar 

  • Priestley R, Mohammed C, Dewey FM (1994) The development of monoclonal antibody-based ELISA and dipstick assays for the detection and identification of Armillaria species in infected wood. In: Schots A, Dewey FM, Oliver RP (eds) Modem assays for plant pathogenic fungi. CAB International, Oxford, pp 149–156

    Google Scholar 

  • RÃ¥berg U, Högberg NOS, Land CJ (2005) Detection and species discrimination using rDNA T-RFLP for identification of wood decay fungi. Holzforschung 59:696–702

    Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Its biology and ecology. Wiley, Chichester, pp 587

    Google Scholar 

  • Redecker D, Hijri M, Dulieu H, Sanders IR (1999) Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of internal transcribed spacers reported from Scutellospora castanea are of Ascomycete origin. Fungal Genet Biol 28:238–244

    PubMed  CAS  Google Scholar 

  • Rizzo DM, Harrington TC (1993) Delineation and biology of clones of Armillaria ostoyae, A. gemina and A. calvescens. Mycologia 85:164–174

    Google Scholar 

  • Schena L, Ippolito A (2003) Rapid and sensitive detection of Rosellinia necatrix in roots and soils by real time Scorpion-PCR. J Plant Pathol 85:15–25

    CAS  Google Scholar 

  • Schmidt O (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol Prog 6:261–279

    Google Scholar 

  • Schmidt O, Huckfeldt T (2005) Gebäudepilze. In: Müller J (ed) Holzschutz im Hochbau. Fraunhofer IRB, Stuttgart, pp 44–72

    Google Scholar 

  • Schmidt O, Moreth U (1995) Detection and differentiation of Poria indoor brown-rot fungi by polyacrylamide gel electrophoresis. Holzforschung 49:11–14

    CAS  Google Scholar 

  • Schmidt O, Moreth U (1998) Characterization of indoor rot fungi by RAPD analysis. Holzforschung 52:229–233

    CAS  Google Scholar 

  • Schmidt O, Moreth U (1999) Identification of the dry rot fungus, Serpula lacrymans, and the wild merulius, S. himantioides, by amplified ribosomal DNA restriction analysis (ARDRA). Holzforschung 53:123–128

    CAS  Google Scholar 

  • Schmidt O, Moreth U (2000) Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lacrymans. Mycol Res 104:69–72

    CAS  Google Scholar 

  • Schmittgen TD (2001) Real-time quantitative PCR. Methods 25:383–385

    PubMed  CAS  Google Scholar 

  • Schulze S, Bahnweg G, Möller EM, Sandermann H Jr (1997) Identification of the genus Armillaria by specific amplification of an rDNA-ITS fragment and evaluation of genetic variation within A. ostoyae by rDNA-RFLP and RAPD analysis. Eur J Forest Pathol 27:225–239

    Google Scholar 

  • Schwarze FWMR, Baum S (2000) Mechanisms of reaction zone penetration by decay fungi in wood of beech (Fagus sylvatica). New Phytol 146:129–140

    Google Scholar 

  • Schwarze FWMR, Engels J, Mattheck C (2004) Fungal strategies of wood decay in trees, 2nd edn. Springer, Berlin

    Google Scholar 

  • Sicoli G, Fatehi J, Stenlid J (2003) Development of species-specific PCR primers on rDNA for the identification of European Armillaria species. Forest Pathol 33:287–297

    Google Scholar 

  • Sierra AP, Whitehead DS, Whitehead MP (1999) Investigation of a PCR-based method for the routine identification of British Armillaria species. Mycol Res 103:1631–1636

    Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Google Scholar 

  • Stalpers JA (1978) Identification of wood-inhabiting fungi in pure culture, Stud Mycol 16. Centraalbureau Schimmelcultures, Baarn, p 248

    Google Scholar 

  • Strouts RG, Winter TG (1994) Diagnosis of ill-health in trees. Forestry Commission, London, UK, pp 308

    Google Scholar 

  • Schulze S, Bahnweg G, Tesche M, Sandermann H Jr (1995) Identification of European Armillaria species by restriction-fragment length polymorphisms of ribosomal DNA. Eur J For Pathol 25:214–223

    Google Scholar 

  • Suhara H, Maekawa N, Kubayashi T, Kondo R (2005) Specific detection of a basidiomycete, Phlebia brevispora associated with butt rot of Chamaecyparis obtusa, by PCR-based analysis. J Wood Sci 51:83–88

    CAS  Google Scholar 

  • Suhara H, Maekawa N, Kubayashi T, Sakai K, Kondo R (2002) Identification of the basidiomycetous fungus isolated from butt rot of the Japanese cypress. Mycoscience 43:477–481

    Google Scholar 

  • Swiecki TJ, Bernhardt E, Drake C, Costello LR (2005) Relationships between Phytophthora ramorum canker (sudden oak death) and failure potential in coast live oak. In: Proceedings of the Sudden Oak Death Second Science Symposium, 19–21 January, 2005; Monterey. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA. Gen. Tech. Rep. PSW-GTR-196, pp 427–453

    Google Scholar 

  • Terho M, Hantula J, Hallaksela AM (2007) Occurrence and decay patterns of common wood-decay fungi in hazardous trees felled in the Helsinki City. Forest Pathol 37:420–432

    Google Scholar 

  • Tomikawa Y, Iwase Y, Arita K, Yamada H (1990) Nondestructive inspection of wooden poles using ultrasonic computed tomography. IEEE Trans UFFC 33:354–358

    Google Scholar 

  • Tsai JN, Hsieh WH, Ann PJ, Yang CM (2007) Development of specific primers for Phellinus noxius. Plant Pathol Bull 16:193–202

    CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    PubMed  CAS  Google Scholar 

  • Ullrich RC, Anderson JB (1978) Sex and diploidy in Armillaria mellea. Exp Mycol 2:119–129

    Google Scholar 

  • Utomo C, Niepold F (2000) Development of diagnostic methods for detecting Ganoderma-infected oil palms. J Phytopathol 148:507–514

    CAS  Google Scholar 

  • Utomo C, Werner S, Niepold F, Deising HB (2005) Identification of Ganoderma, the causal agent of basal stem rot disease in oil palm using a molecular method. Mycopathologia 159:159–170

    PubMed  CAS  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    CAS  Google Scholar 

  • Wagner T, Fischer M (2002) Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia 94:998–1016

    PubMed  Google Scholar 

  • Wahlstrom K, Karlsson JO, Holdenrieder O, Stenlid J (1991) Pectinolytic activity and isozymes in European Armillaria species. Can J Bot 69:2732–2739

    Google Scholar 

  • Wargo PM, Harrington TC (1991) Host stress and susceptibility. In: Shaw CG, Kile GA (eds) Armillaria root disease. Washington D.C, USDA Forest Service, pp 88–101

    Google Scholar 

  • Watling R, Kile GA, Burdsall HHJ (1991) Nomenclature, taxonomy, and identification. In: Shaw CG, Kile GA (eds) Armillaria root disease. USDA Forest Service, Washington D.C., pp 1–9

    Google Scholar 

  • Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807

    PubMed  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic press, San Diego, USA, pp 315–322

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  • Woodward S, Stenlid J, Karjalainen R, Hüttermann A (Eds.) (1998) Preface. In: Heterobasidion annosum, biology, ecology, impact and control. CAB International, Oxon, UK, pp xi–xii

    Google Scholar 

  • Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Nicolotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicolotti, G., Gonthier, P., Guglielmo, F. (2010). Advances in Detection and Identification of Wood Rotting Fungi in Timber and Standing Trees. In: Gherbawy, Y., Voigt, K. (eds) Molecular Identification of Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05042-8_12

Download citation

Publish with us

Policies and ethics