Skip to main content

Fluorescence Reporting Based on FRET Between Conjugated Polyelectrolyte and Organic Dye for Biosensor Applications

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos SDA, Brédas JL, Lögdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature (London) 397:121–128

    Article  CAS  Google Scholar 

  2. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791

    Article  CAS  Google Scholar 

  3. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–1744

    Article  CAS  Google Scholar 

  4. Hide F, Díaz-García MA, Schwartz BJ, Andersson M, Pei Q, Heeger AJ (1996) Semiconducting polymers: a new class of solid-state laser materials. Science 273:1833–1836

    Article  CAS  Google Scholar 

  5. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  6. Weber SE (1990) Photon-harvesting polymers. Chem Rev 90:1469–1482

    Article  Google Scholar 

  7. Korri YH, Garnier F, Srivastava P, Godillot P, Yassar A (1997) Toward bioelectronics: specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J Am Chem Soc 119:7388–7389

    Article  Google Scholar 

  8. Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100:1605–1644

    Article  CAS  Google Scholar 

  9. Kim K, Bouffard J, Kooi SE, Swager TM (2005) Highly emissive conjugated polymer excimers. J Am Chem Soc 127:13726–13731

    Article  CAS  Google Scholar 

  10. Faïd K, Leclerc M (1998) Responsive supramolecular polythiophene assemblies. J Am Chem Soc 120:5274–5278

    Article  Google Scholar 

  11. Swager TM (1998) The molecular wire approach to sensory signal amplification. Acc Chem Res 31:201–207

    Article  CAS  Google Scholar 

  12. Pinto MR, Schanze KS (2002) Conjugated polyelectrolytes: synthesis and applications. Synthesis 9:1293–1309

    Article  Google Scholar 

  13. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  14. Liu B, Gaylord BS, Wang S, Bazan GC (2003) Effect of chromophore-charge distance on the energy transfer properties of water-soluble conjugated oligomers. J Am Chem Soc 125:6705–6714

    Article  CAS  Google Scholar 

  15. Xu QH, Gaylord BS, Wang S, Bazan GC, Moses D, Heeger AJ (2004) Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions. Proc Natl Acad Sci USA 101:11634–11639

    Article  CAS  Google Scholar 

  16. Wang D, Gong X, Heeger PS, Rininsland F, Bazan GC, Heeger AJ (2002) Biosensors from conjugated polyelectrolyte complexes. Proc Natl Acad Sci USA 109:49–53

    Article  CAS  Google Scholar 

  17. Fan C, Plaxco KW, Heeger AJ (2002) High-efficiency fluorescence quenching of conjugated polymers by proteins. J Am Chem Soc 124:5642–5643

    Article  CAS  Google Scholar 

  18. Kim IK, Bunz UHF (2006) Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water. J Am Chem Soc 128:2818–2819

    Article  CAS  Google Scholar 

  19. Zhou Q, Swager TM (1995) Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem Soc 117:12593–12602

    Article  CAS  Google Scholar 

  20. Chen L, McBranch DW, Wang HL, Helgeson R, Wudl F, Whitten DG (1999) Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci USA 96:12287–12292

    Article  CAS  Google Scholar 

  21. Kumaraswamy S, Bergstedt T, Shi X, Rininsland F, Kushon S, Xia WS, Ley K, Achyuthan K, McBranch D, Whitten DG (2004) fluorescent conjugated polymer superquenching facilitates highly sensitive detection of proteases. Proc Natl Acad USA 101:7511–7515

    Article  CAS  Google Scholar 

  22. Pinto MR, Schanze KS (2004) Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc Natl Acad Sci USA 101:7505–7510

    Article  CAS  Google Scholar 

  23. Achyuthan KE, Bergstedt TS, Chen L, Jones RM, Kumaraswamy S, Kushon SA, Ley KD, Lu L, McBranch D, Mukundan H, Rininsland F, Shi X, Xia W, Whitten DG (2005) Fluorescence superquenching of conjugated polyelectrolytes: applications for biosensing and drug discovery. J Mater Chem 15:2648–2656

    Article  CAS  Google Scholar 

  24. Kim J, McQuade DT, McHugh SK, Swager TM (2000) Ion-specific aggregation in conjugated polymers: highly sensitive and selective fluorescent ion chemosensors. Angew Chem Int Ed 39:3868–3872

    Article  CAS  Google Scholar 

  25. Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito, CA

    Google Scholar 

  26. Phillips RL, Kim IB, Tolbert LM, Bunz UHF (2008) Fluorescence self-quenching of a mannosylated poly(p-phenyleneethynylene) induced by concanavalin A. J Am Chem Soc 130:6952–6954

    Article  CAS  Google Scholar 

  27. Satrijo A, Swager TM (2007) Anthryl-doped conjugated polyelectrolytes as aggregation-based sensors for nonquenching multicationic analytes. J Am Chem Soc 129:6020–6028

    Article  CAS  Google Scholar 

  28. Sun H, Feng F, Yu M, Wang S (2007) Analyte-induced aggregation of a water-soluble conjugated polymer for fluorescent assay of oxalic acid. Macromol Rapid Commun 28:1905–1911

    Article  CAS  Google Scholar 

  29. Xue C, Cai F, Liu H (2007) Ultrasensitive fluorescent responses of water-soluble, zwitterionic, boronic acid-bearing, regioregular head-to-tail polythiophene to biological species. Chem Eur J 14:1648–1653

    Article  CAS  Google Scholar 

  30. Ho HA, Boissinot M, Bergeron MG, Corbeil G, Doré K, Boudreau D, Leclerc M (2002) Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew Chem Int Ed 41:1548–1551

    Article  CAS  Google Scholar 

  31. Nilsson KPR, Inganäs O (2003) Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nat Mater 2:419–424

    Article  CAS  Google Scholar 

  32. Ho HA, Najari A, Leclerc M (2008) Optical detection of DNA and proteins with cationic polythiophenes. Acc Chem Res 41:168–178

    Article  CAS  Google Scholar 

  33. Ho HA, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387

    Article  CAS  Google Scholar 

  34. Nilsson KPR, Rydberg J, Baltzer L, Inganäs O (2003) Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. Proc Natl Acad Sci USA 110:10170–10174

    Article  CAS  Google Scholar 

  35. Li C, Numata M, Takeuchi M, Shinkai S (2005) A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew Chem Int Ed 44:6371–6374

    Article  CAS  Google Scholar 

  36. Maynor MS, Nelson TL, Sullivan CO, Lavigne JJ (2007) A food freshness sensor using the multistate response from analyte-induced aggregation of a cross-reactive poly(thiophene). Org Lett 9:3217–3220

    Article  CAS  Google Scholar 

  37. Yao Z, Li C, Shi G (2008) Optically active supramolecular complexes of water-soluble achiral polythiophenes and folic acid: spectroscopic studies and sensing applications. Langmuir 24:12829–12835

    Article  CAS  Google Scholar 

  38. Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476

    Article  CAS  Google Scholar 

  39. Bazan GC (2007) Novel organic materials through control of multichromophore interactions. J Org Chem 72:8615–8635

    Article  CAS  Google Scholar 

  40. Pu KY, Liu B (2009) Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications. Biosens Bioelectron 24:1067–1073

    Article  CAS  Google Scholar 

  41. Van der Meer BW, Coker G III, Chen SYS (1994) Resonance energy transfer theory and data. VCH, New York

    Google Scholar 

  42. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  Google Scholar 

  43. Gaylord BS, Heeger AJ, Bazan GC (2002) DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci USA 99:10954–10957

    Article  CAS  Google Scholar 

  44. Wang J (2000) From DNA biosensors to gene chips. Nucleic Acid Res 28:3003–3010

    Article  Google Scholar 

  45. Sutherland G, Mulley J, Symons RH (1989) In nucleic acid probes. CRC, Gainesville, FL

    Google Scholar 

  46. Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134–9137

    Article  CAS  Google Scholar 

  47. Mannelli I, Minunni M, Tombelli S, Mascini M (2003) Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosens Bioelectron 18:129–140

    Article  CAS  Google Scholar 

  48. Patolsky F, Lichtenstein A, Willner I (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol 19:253–258

    Article  CAS  Google Scholar 

  49. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  Google Scholar 

  50. Gaylord BS, Massie MR, Feinstein SC, Bazan GC (2005) SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proc Natl Acad Sci USA 102:34–39

    Article  CAS  Google Scholar 

  51. Gaylord BS, Heeger AJ, Bazan GC (2003) DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J Am Chem Soc 125:896–900

    Article  CAS  Google Scholar 

  52. Ho HA, Doré K, Boissinot M, Bergeron MG, Tanguay RM, Boudreau D, Leclerc M (2005) Direct molecular detection of nucleic acids by fluorescence signal amplification. J Am Chem Soc 127:12673–12676

    Article  CAS  Google Scholar 

  53. Duan X, Li Z, He F, Wang S (2007) A sensitive and homogeneous SNP detection using cationic conjugated polymers. J Am Chem Soc 129:4154–4155

    Article  CAS  Google Scholar 

  54. Xu H, Wu H, Huang F, Song S, Li W, Cao Y, Fan C (2005) Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Res 33:e83

    Article  CAS  Google Scholar 

  55. Wang S, Gaylord BS, Bazan GC (2004) Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. J Am Chem Soc 126:5446–5451

    Article  CAS  Google Scholar 

  56. Liu B, Bazan GC (2007) Energy transfer between a cationic conjugated poly(fluorene-co-phenylene) and thiazole orange for DNA hybridization detection involving G-rich sequences. Macromol Rapid Commun 28:1804–1808

    Article  CAS  Google Scholar 

  57. Xu QH, Wang S, Korystov D, Mikhailovsky A, Bazan GC (2005) The fluorescence resonance energy transfer (FRET) gate: a time-resolved study. Proc Natl Acad Sci USA 102:530–535

    Article  CAS  Google Scholar 

  58. Pu KY, Liu B (2008) Intercalating dye harnessed cationic conjugated polymer for real-time naked-eye recognition of double-stranded DNA in serum. Adv Funct Mater 19:1371–1378

    Article  CAS  Google Scholar 

  59. Li K, Liu B (2009) Conjugated polyelectrolyte amplified thiazole orange emission for label free sequence specific DNA detection with single nucleotide polymorphism selectivity. Anal Chem 81:4099–4105

    Article  CAS  Google Scholar 

  60. Service RF (1998) Microchip arrays put DNA on the spot. Science 282:396–399

    Article  Google Scholar 

  61. Southern EM (1996) DNA chips: analyzing sequence by hybridization to oligonucleotides on a large scale. Trends Genet 12:110–115

    Article  CAS  Google Scholar 

  62. Liu B, Bazan GC (2005) Methods for strand-specific DNA detection with cationic conjugated polymers suitable for incorporation into DNA chips and microarrays. Proc Natl Acad Sci USA 102:589–593

    Article  CAS  Google Scholar 

  63. Lee K, Rouillard JM, Pham T, Gulari E, Kim J (2007) Signal-amplifying conjugated polymer–DNA hybrid chips. Angew Chem Int Ed 46:4667–4670

    Article  CAS  Google Scholar 

  64. Lee K, Maisel K, Rouillard JM, Gulari E, Kim J (2008) Sensitive and selective label-free DNA detection by conjugated polymer-based microarrays and intercalating dye. Chem Mater 20:2848–2850

    Article  CAS  Google Scholar 

  65. Liu B, Baudrey S, Jaeger L, Bazan GC (2004) Characterization of TectoRNA assembly with cationic conjugated polymers. J Am Chem Soc 126:4076–4077

    Article  CAS  Google Scholar 

  66. Wang S, Bazan GC (2003) Optically amplified RNA–protein detection methods using light-harvesting conjugated polymers. Adv Mater 15:1425–1428

    Article  CAS  Google Scholar 

  67. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  68. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment. Angew Chem Int Ed 32:1111–1121

    Article  Google Scholar 

  69. Bédas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5004

    Article  CAS  Google Scholar 

  70. Liu B, Bazan GC (2006) Optimization of the molecular orbital energies of conjugated polymers for optical amplification of fluorescent sensors. J Am Chem Soc 128:1188–1196

    Article  CAS  Google Scholar 

  71. Tan CY, Atas E, Müller JG, Pinto MR, Kleiman VD, Schanze KS (2004) Amplified quenching of a conjugated polyelectrolyte by cyanine dyes. J Am Chem Soc 126:13685–13694

    Article  CAS  Google Scholar 

  72. Turro NJ (1997) Modern molecular photochemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  73. Woo HY, Vak D, Korystov D, Mikhailovsky A, Bazan GC, Kim DY (2007) Cationic conjugated polyelectrolytes with molecular spacers for efficient fluorescence energy transfer to dye-labeled DNA. Adv Funct Mater 17:290–295

    Article  CAS  Google Scholar 

  74. Kang M, Nag OK, Nayak RR, Hwang S, Suh H, Woo HY (2009) Signal amplification by changing counterions in conjugated polyelectrolyte-based FRET DNA detection. Macromolecules 42:2708–2714

    Article  CAS  Google Scholar 

  75. Liu B, Wang S, Bazan GC, Mikhailovsky A (2003) Shape-adaptable water-soluble conjugated polymers. J Am Chem Soc 125:13306–13307

    Article  CAS  Google Scholar 

  76. Liu B, Dan TTT, Bazan GC (2007) Collective response from a cationic tetrahedral fluorene for label-free DNA detection. Adv Funct Mater 17:2432–2438

    Article  CAS  Google Scholar 

  77. Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz LM, Friend RH, Scholes GD, Setayesh S, Müllen K, Bredas JL (2002) Interchain vs. intrachain energy transfer in acceptor-capped conjugated polymers. Proc Natl Acad Sci USA 99:10982–10987

    Article  CAS  Google Scholar 

  78. Liu B, Bazan GC (2004) Interpolyelectrolyte complexes of conjugated copolymers and DNA: platforms for multicolor biosensors. J Am Chem Soc 126:1942–1943

    Article  CAS  Google Scholar 

  79. Dishari SK, Pu KY, Liu B (2009) Combinatorial energy transfer between an end-capped conjugated polyelectrolyte and chromophore-labeled PNA for strand-specific DNA detection. Macromol Rapid Commun 30:1645–1650

    Article  CAS  Google Scholar 

  80. Pu KY, Fang Z, Liu B (2008) Effect of charge density on energy-transfer properties of cationic conjugated polymers. Adv Funct Mater 18:1321–1328

    Article  CAS  Google Scholar 

  81. Liu B, Bazan GC (2007) Tetrahydrofuran activates fluorescence resonant energy transfer from a cationic conjugated polyelectrolyte to fluorescein-labeled DNA in aqueous media. Chem Asian J 2:499–504

    Article  CAS  Google Scholar 

  82. Pu KY, Pan SYH, Liu B (2008) Optimization of interactions between a cationic conjugated polymer and chromophore-labeled DNA for optical amplification of fluorescent sensors. J Phys Chem B 112:9295–9300

    Article  CAS  Google Scholar 

  83. Hameed AAA, Andy PM (2008) Effect of surfactant on FRET and quenching in DNA sequence detection using conjugated polymers. Adv Funct Mater 18:2498–2509

    Article  CAS  Google Scholar 

  84. Hameed AAA, Jean N, Stephen O, Andy PM (2008) Improved single nucleotide polymorphisms detection using conjugated polymer/surfactant system and peptide nucleic acid. Biosens Bioelectron 23:1466–1472

    Article  CAS  Google Scholar 

  85. Wang YS, Liu B (2007) Label-free single nucleotide polymorphism detection using a cationic tetrahedralfluorene and silica nanoparticles. Anal Chem 79:7214–7220

    Article  CAS  Google Scholar 

  86. Wang YS, Liu B (2007) Silica nanoparticle assisted DNA assays for optical signal amplification of conjugated polymer based fluorescent sensors. Chem Commun 34:3553–3555

    Article  CAS  Google Scholar 

  87. Kodadek T (2001) Protein microarrays: prospects and problems. Chem Biol 8:105–115

    Article  CAS  Google Scholar 

  88. Wright AT, Anslyn EV (2006) Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev 35:14–28

    Article  CAS  Google Scholar 

  89. Lai S, Wang SN, Luo J, Lee LJ, Yang ST, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837

    Article  CAS  Google Scholar 

  90. Kim IB, Dunkhorst A, Bunz UHF (2005) Nonspecific interactions of a carboxylate-substituted PPE with protein: a cautionary tale for biosensor applications. Langmuir 21:7985–7989

    Article  CAS  Google Scholar 

  91. You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat Nanotechnol 2:318–323

    Article  CAS  Google Scholar 

  92. Zhang Y, Liu B, Cao Y (2008) Synthesis and characterization of a water-soluble carboxylated polyfluorene and its fluorescence quenching by cationic quenchers and proteins. Chem Asian J 3:739–745

    Article  CAS  Google Scholar 

  93. Miranda OR, You CC, Phillips R, Kim IB, Ghosh PS, Bunz UHF, Rotello VM (2007) Array-based sensing of proteins using conjugated polymers. J Am Chem Soc 129:9856–9857

    Article  CAS  Google Scholar 

  94. Zheng J, Swager TM (2004) Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes. Chem Commun 24:2798–2799

    Article  CAS  Google Scholar 

  95. An L, Tang Y, Wang S, Li Y, Zhu D (2006) A fluorescence ratiometric protein assay using light-harvesting conjugated polymers. Macromol Rapid Commun 27:993–997

    Article  CAS  Google Scholar 

  96. Wang Y, Liu B (2009) Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay. Biosens Bioelectron 24:3293–3298

    Article  CAS  Google Scholar 

  97. Santra S, Zhang P, Wang KM, Tapec R, Tan WH (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  98. Yang HH, Qu HY, Lin P, Li SH, Ding MT, Xu JG (2003) Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels. Analyst 128:462–466

    Article  CAS  Google Scholar 

  99. Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 76:4066–4075

    Article  CAS  Google Scholar 

  100. Wang J, Liu B (2009) Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem Commun 17:2284–2286

    Article  CAS  Google Scholar 

  101. Wang Y, Liu B (2009) Conjugated polyelectrolyte sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787–12793

    Google Scholar 

  102. Béra-Abérem M, Najari A, Ho HA, Gravel JF, Nobert P, Boudreau D, Leclerc M (2006) Protein detecting arrays based on cationic polythiophene–DNA aptamer complexes. Adv Mater 18:2703–2707

    Article  CAS  Google Scholar 

  103. Li H, Bazan GC (2009) Conjugated oligoelectrolyte/ssDNA aggregates: self-assembled multicomponent chromophores for protein discrimination. Adv Mater 21:964–967

    Article  CAS  Google Scholar 

  104. Zhang Y, Wang Y, Liu B (2009) Peptide-mediated energy transfer between an anionic water-soluble conjugated polymer and Texas red labeled DNA for protease and nuclease activity study. Anal Chem 81:3731–3737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pu, KY., Liu, B. (2010). Fluorescence Reporting Based on FRET Between Conjugated Polyelectrolyte and Organic Dye for Biosensor Applications. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04701-5_14

Download citation

Publish with us

Policies and ethics