Skip to main content

Structure, Emissive Properties, and Reporting Abilities of Conjugated Polymers

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  2. Zheng J, Swager TM (2005) Poly(arylene ethynylene)s in chemosensing and biosensing. Adv Polym Sci 177:151–179

    Article  CAS  Google Scholar 

  3. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  4. Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 2000:1605–1644

    Article  CAS  Google Scholar 

  5. Reppy MA, Pindzola BA (2007) Biosensing with polydiacetylene materials: structures, optical properties and applications. Chem Commun 42:4317–4388

    Article  CAS  Google Scholar 

  6. Fan L-J, Zhanga Y, Murphy CB, Angell SE, Parker MFL, Flynn BR, Jones WE Jr (2009) Fluorescent conjugated polymer molecular wire chemosensors for transition metal ion recognition and signaling. Coord Chem Rev 253:401–422

    Article  CAS  Google Scholar 

  7. Ambade AV, Sandanara BS, Klaikherd A, Thayumanavan S (2007) Fluorescent polyelectrolytes as protein sensors. Polym Int 56:474–481

    Article  CAS  Google Scholar 

  8. Liu B, Bazan GC (2004) Interpolyelectrolyte complexes of conjugated copolymers and DNA: platforms for multicolor biosensors. J Am Chem Soc 126:1942–1943

    Article  CAS  Google Scholar 

  9. Liu B, Bazan GC (2009) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476

    Article  CAS  Google Scholar 

  10. Liu B, Wang S, Bazan GC, Mikhailovsky A (2003) Shape-adaptable water-soluble conjugated polymers. J Am Chem Soc 125:13306–13307

    Article  CAS  Google Scholar 

  11. Tan C, Pinto MR, Kose ME, Ghiviriga I, Schanze KS (2004) Solvent-induced self-assembly of a meta-linked conjugated polyelectrolyte. Helix formation, guest intercalation, and amplified quenching. Adv Mater 16:1208–1212

    Article  CAS  Google Scholar 

  12. Chen L, McBranch DW, Wang H-L, Helgeson R, Wudl F, Whitten DG (1999) Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci 96:12287–12292

    Article  CAS  Google Scholar 

  13. Achyuthan KE, Bergstedt TS, Chen L, Jones RM, Kumaraswamy S, Kushon SA, Ley KD, Lu L, McBranch D, Mukundan H, Rininsland F, Sh X, Xia W, Whitten DG (2005) Fluorescence superquenching of conjugated polyelectrolytes: applications for biosensing and drug discovery. J Mater Chem 15:2648–2656

    Article  CAS  Google Scholar 

  14. McQuade DT, Kim J, Swager TM (2000) Two-dimensional conjugated polymer assemblies: interchain spacing for control of photophysics. J Am Chem Soc 122:5885–5886

    Article  CAS  Google Scholar 

  15. Zahn S, Swager TM (2002) Three-dimensional electronic delocalization in chiral conjugated polymers. Angew Chem Int Ed 41:4225–4230

    Article  Google Scholar 

  16. Lee JK, Lee TS (2005) Newly synthesized polybenzoxazole derivative with an adjacent hydroxyphenyl ring for optical sensing. J Polym Sci A Polym Chem 43:1397–1403

    Article  CAS  Google Scholar 

  17. Yang NC, Chang S, Suh DH (2003) Synthesis and optically acid-sensory properties of novel polyoxadiazole derivatives. Polymer 44:2143–2148

    Article  CAS  Google Scholar 

  18. Yang NC, Jeong JK, Suh DH (2003) A new conjugated polymer chemosensor functionalised with 2, 6-bis(1, 3, 4-oxadiazole-2-yl)pyridine for metal ion recognition. Chem Lett 32:40–41

    Article  CAS  Google Scholar 

  19. Kim TH, Kim HJ, Kwak CG, Park WH, Lee TS (2006) Aromatic oxadiazole-based conjugated polymers with excited-state intramolecular proton transfer: their synthesis and sensing ability for explosive nitroaromatic compounds. J Polym Sci A Polym Chem 44:2059–2068

    Article  CAS  Google Scholar 

  20. Zhou G, Cheng Y, Wang L, Jing X, Wang F (2005) Novel polyphenylenes containing phenol-substituted oxadiazole moieties as fluorescent chemosensors for fluoride ion. Macromolecules 38:2148–2153

    Article  CAS  Google Scholar 

  21. Bangcuyo CG, Rampey-Vaughn ME, Quan LT, Angel SM, Smith MD, Bunz UHF (2002) Quinoline-containing, conjugated poly(aryleneethynylene)s: novel metal and H+ responsive materials. Macromolecules 35:1563–1568

    Article  CAS  Google Scholar 

  22. Bangcuyo CG, Ellsworth JM, Evans U, Myrick ML, Bunz UHF (2003) Quinoxaline-based poly(aryleneethynylene)s. Macromolecules 36:546–548

    Article  CAS  Google Scholar 

  23. Wu T-Y, Chen Y (2004) Poly(phenylene vinylene)-based copolymers containing 3,7-phenothiazylene and 2, 6-pyridylene chromophores: fluorescence sensors for acids, metal ions, and oxidation. J Polym Sci A Polym Chem 42:1272–1284

    Article  CAS  Google Scholar 

  24. Okada S, Peng S, Spevak W, Charych DH (1998) Color and chromism of polydiacetylene vesicles. Acc Chem Res 31:229–239

    Article  CAS  Google Scholar 

  25. Reppy MA, Sporn SA, Saller CF (2000) Method for detecting an analyte by fluorescence US Patent 6,984,528

    Google Scholar 

  26. Reppy MA (2002) Signal generation from switchable polydiacetylene fluorescence. Mater Res Soc Symp Proc 723:O5_9_1–O5_9_6

    Google Scholar 

  27. Yoon B, Lee S, Kim J-M (2009) Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors. Chem Soc Rev 38:1958–1968

    Article  CAS  Google Scholar 

  28. Saxena A, Fujiki M, Rai R, Kim S-Y, Kwa G (2004) Highly sensitive and selective fluoride ion chemosensing, fluoroalkylated polysilane. Macromol Rapid Commun 25:1771–1775

    Article  CAS  Google Scholar 

  29. Toal SJ, Magde D, Trogler WC (2005) Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT. Chem Commun 43:5465–5467

    Article  CAS  Google Scholar 

  30. Sohn H, Sailor MJ, Magde D, Trogler WC (2003) Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. J Am Chem Soc 125:3821–3830

    Article  CAS  Google Scholar 

  31. Brédas J-L, Cornil J, Beljonne D, Santos DAD, Shuai Z (1999) Excited-state electronic structure of conjugated oligomers and polymers: a quantum-chemical approach to optical phenomena. Acc Chem Res 32:267–276

    Article  Google Scholar 

  32. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5003

    Article  CAS  Google Scholar 

  33. Gierschner J, Cornil J, Egelhaaf H-J (2007) Optical bandgaps of π-conjugated organic materials at the polymer limit: experiment and theory. Adv Mater 19:173–191

    Article  CAS  Google Scholar 

  34. Yu J, Hu D, Barbara PF (2000) Unmasking electronic energy transfer of conjugated polymers by suppression of O2 quenching. Science 289:1327–1330

    Article  CAS  Google Scholar 

  35. Huser T, Yan M, Rothberg LJ (2000) Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proc Natl Acad Sci 97:11187–11191

    Article  CAS  Google Scholar 

  36. Schwartz BJ (2003) Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu Rev Phys Chem 54:141–172

    Article  CAS  Google Scholar 

  37. Lin H, Tabaei SR, Thomsson D, Mirzov O, Larsson P-O, Scheblykin IG (2008) Fluorescence blinking, exciton dynamics, and energy transfer domains in single conjugated polymer chains. J Am Chem Soc 130:7042–7051

    Article  CAS  Google Scholar 

  38. Nguyen T-Q, Wu J, Doan V, Schwartz BJ, Tolbert SH (2000) Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science 288:652–656

    Article  CAS  Google Scholar 

  39. Sakurai M, Tamagawa H, Inoue Y, Ariga K, Kunitake T (1997) Theoretical study of intermolecular interaction at the lipid–water interface. 1. Quantum chemical analysis using a reaction field theory. J Phys Chem B 101:4810–4816

    Article  CAS  Google Scholar 

  40. Sakurai M, Tamagawa H, Inoue Y, Ariga K, Kunitake T (1997) Theoretical study of intermolecular interaction at the lipid–water interface. 2. Analysis – based on the Poisson–Boltzmann equation. J Phys Chem B 101:4817–4825

    Article  Google Scholar 

  41. Onda M, Yoshihara K, Koyano H, Ariga K, Kunitake T (1996) Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers. A comparison of microscopic and macroscopic interfaces. J Am Chem Soc 118:8524–8530

    Article  CAS  Google Scholar 

  42. Sakurai M, Tamagawa H, Furuki T, Inoue Y, Ariga K, Kunitake T (1995) A theoretical interpretation of remarkable enhancement of intermolecular binding at the lipid–water interface. Chem Lett 11:1001–1002

    Article  Google Scholar 

  43. Yang X, Zhao X, Zuo X, Wang K, Wen J, Zhang H (2009) Nucleic acids detection using cationic fluorescent polymer based on one-dimensional microfluidic beads array. Talanta 77:1027–1031

    Article  CAS  Google Scholar 

  44. Rininsland F, Stankewicz C, Weatherford W, McBranch D (2005) High-throughput kinase assays with protein substrates using fluorescent polymer superquenching. BMC Biotechnol 5:16

    Article  CAS  Google Scholar 

  45. Bajaj A, Miranda OR, Kim I-B, Phillips RL, Jerry DJ, Bunz UHF, Rotello VM (2009) Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle–polymer sensor arrays. Proc Natl Acad Sci 106:10912–10916

    Article  CAS  Google Scholar 

  46. Guan H, Zhou P, Zho X, He Z (2008) Sensitive and selective detection of aspartic acid and glutamic acid based on polythiophene–gold nanoparticles composite. Talanta 77:319–324

    Article  CAS  Google Scholar 

  47. Pindzola BA, Nguyen AT, Reppy MA (2006) Antibody-functionalized polydiacetylene coatings on nanoporous membranes for microorganism detection. Chem Commun 8:906–908

    Article  CAS  Google Scholar 

  48. Dai J, Baker GL, Bruening ML (2006) Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific binding. Anal Chem 78:135–140

    Article  CAS  Google Scholar 

  49. Wang X, Kim Y-G, Drew C, Ku B-C, Kumar J, Samuelson LA (2004) Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett 4:331–334

    Article  CAS  Google Scholar 

  50. Long Y, Chen H, Yang Y, Wang H, Yang Y, Li N, Li K, Pei J, Liu F (2009) Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules 42:6501–6509

    Article  CAS  Google Scholar 

  51. Wang S, Granick S, Zhao J (2008) Charge on a weak polyelectrolyte. J Chem Phys 129:1–4

    Google Scholar 

  52. Chen L, Xu S, McBranch D, Whitten D (2000) Tuning the properties of conjugated polyelectrolytes through surfactant complexation. J Am Chem Soc 122:9302–9303

    Article  CAS  Google Scholar 

  53. Lavigne JJ, Broughton DL, Wilson JN, Erdogan B, Bunz UHF (2003) “Surfactochromic” conjugated polymers: surfactant effects on sugar-substituted PPEs. Macromolecules 36:7409–7412

    Article  CAS  Google Scholar 

  54. Wang D, Gong X, Heeger PS, Rininsland F, Bazan GC, Heeger AJ (2002) Biosensors from conjugated polyelectrolyte complexes. Proc Natl Acad Sci 99:49–53

    Article  CAS  Google Scholar 

  55. Kim J-M, Lee YB, Yang DH, Lee J-S, Lee GS, Ahn DJ (2005) A polydiacetylene-based fluorescent sensor chip. J Am Chem Soc 127:17580–17581

    Article  CAS  Google Scholar 

  56. Shim H-Y, Lee SH, Ahn DJ, Ahn K-D, Kim J-M (2004) Micropatterning of diacetylenic liposomes on glass surfaces. Mater Sci Eng C 24:157–161

    Article  CAS  Google Scholar 

  57. Reppy MA, Pindzola BA (2006) Polydiacetylene liposomes attached to glass fibers for bioassays. Mater Res Soc Symp Proc 942(0942):W13-10

    Google Scholar 

  58. Reppy MA, Pindzola BA, Sharma B, Zecher M (2007) Supported polydiacetylene 3-D arrays for fluorescent or phosphorescent detection US Patent Application 20,070,248,950

    Google Scholar 

  59. Reppy MA, Pindzola BA (2009) Solid supported polydiacetylene materials for detection of biological targets, Ch. 13. In: Nagarajan R, Zukas W, Hatton, TA, Lee S (ed) Nanoscience and nanotechnology for chemical and biological defense, ACS symposium series, vol 1016, American Chemical Society, Washington DC

    Google Scholar 

  60. Reppy MA, Pindzola BA, Hussey SL (2008) Preparation of polydiacetylene coatings. US Patent Application 20,080,171,191

    Google Scholar 

  61. Reppy MA, Saller CF (2003) Method for evaluating drug candidates. US Patent 20,040,023,303

    Google Scholar 

  62. Kolusheva S, Wachtel E, Jelinek R (2003) Biomimetic lipid/polymer colorimetric membranes: molecular and cooperative properties. J Lipid Res 44:65–71

    Article  CAS  Google Scholar 

  63. Lakowicz JR (2006) Mechanisms and dynamics of fluorescence quenching, Chapter 9. In: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  64. Lakowicz JR (2006) Quenching of fluorescence, Chapter 8. In: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  65. Rose A, Lugmair CG, Swager TM (2001) Excited-state lifetime modulation in triphenylene-based conjugated polymers. J Am Chem Soc 123:11298–11299

    Article  CAS  Google Scholar 

  66. Zhou Q, Swager TM (1995) Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem Soc 117:12593–12602

    Article  CAS  Google Scholar 

  67. Moon JH, Deans R, Kruegar E, Hancock LF (2003) Capture and detection of a quencher labeled oligonucleotide by poly(phenylene ethylene) particles. Chem Commun 1:104–105

    Article  CAS  Google Scholar 

  68. Yang J-S, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc 120:11864–11873

    Article  CAS  Google Scholar 

  69. Yang J-S, Swager TM (1998) Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials. J Am Chem Soc 120:5321–5322

    Article  CAS  Google Scholar 

  70. Rose A, Zhu Z, Madigan CF, Swager TM, Bulović V (2005) Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434:876–879

    Article  CAS  Google Scholar 

  71. Xu Q, An L, Wang S (2008) Design and synthesis of a new conjugated polyelectrolyte as a reversible pH sensor. Macromol Rapid Commun 29:390–395

    Article  CAS  Google Scholar 

  72. Xue C, Cai F, Liu H (2008) Ultrasensitive fluorescent responses of water-soluble, zwitterionic, boronic acid-bearing, regioregular head-to-tail polythiophene to biological species. Chem Eur J 14:1648–1653

    Article  CAS  Google Scholar 

  73. Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE Jr (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108:1537–1543

    Article  CAS  Google Scholar 

  74. Kim J, McQuade DT, McHugh SK, Swager TM (2000) Ion-specific aggregation in conjugated polymers: highly sensitive and selective fluorescent ion chemosensors. Angew Chem Int Ed 39:3868–3872

    Article  CAS  Google Scholar 

  75. Kim T-H, Swager TM (2003) A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions. Angew Chem Int Ed 42:4803–4806

    Article  CAS  Google Scholar 

  76. Qu Y, Hua J, Yiang Y, Tian H (2009) Novel side-chain naphthalimide polyphenylacetylene as a ratiometric fluorescent chemosensor for fluoride ion. J Polym Sci A Polym Chem 47:1544–1552

    Article  CAS  Google Scholar 

  77. Wang B, Wasielewski MR (1997) Design and synthesis of metal ion-recognition-induced conjugated polymers: an approach to metal ion sensory materials. J Am Chem Soc 119:12–21

    Article  CAS  Google Scholar 

  78. Liu X, Zhou X, Shu X, Zhu J (2009) A polymer-based ultrasensitive metal ion sensor. Macromolecules 42:7634–7637

    Article  CAS  Google Scholar 

  79. Zhang Y, Murphy CB, Jones WE Jr (2002) Poly[p-(phenyleneethynylene)-alt-(thienyleneethynylene)] polymers with oligopyridine pendant groups: highly sensitive chemosensors for transition metal ions. Macromolecules 35:630–636

    Article  CAS  Google Scholar 

  80. Liu B, Yu W-L, Pei J, Liu S-Y, Lai Y-H, Huang W (2001) Design and synthesis of bipyridyl-containing conjugated polymers: effects of polymer rigidity on metal ion sensing. Macromolecules 34:7932–7940

    Article  CAS  Google Scholar 

  81. Béra-Abérem M, Ho H-A, Leclerc M (2004) Functional polythiophenes as optical chemo- and biosensors. Tetrahedron 60:11169–11173

    Article  CAS  Google Scholar 

  82. Kushon SA, Ley KD, Bradford K, Jones RM, McBranch D, Whitten D (2002) Detection of DNA hybridization via fluorescent polymer superquenching. Langmuir 18:7245–7249

    Article  CAS  Google Scholar 

  83. Kushon SA, Bradford K, Marin V, Suhrada C, Armitage BA, McBranch D, Whitten D (2003) Detection of single nucleotide mismatches via fluorescent polymer superquenching. Langmuir 19:6456–6464

    Article  CAS  Google Scholar 

  84. Ho HA, Doré K, Boissinot M, Bergeron MG, Tanguay RM, Boudreau D, Leclerc M (2005) Direct molecular detection of nucleic acids by fluorescence signal amplification. J Am Chem Soc 127:12673–12676

    Article  CAS  Google Scholar 

  85. Doré K, Dubus S, Ho H-A, Lévesque I, Brunette M, Corbeil G, Boissinot M, Boivin G, Bergeron MG, Boudreau D, Leclerc M (2004) Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J Am Chem Soc 126:4240–4244

    Article  CAS  Google Scholar 

  86. Pinto MR, Schanze KS (2004) Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc Natl Acad Sci 101:7505–7519

    Article  CAS  Google Scholar 

  87. Kumaraswamy S, Bergstedt T, Sh X, Rininsland F, Kushon S, Xia W, Ley K, Achyuthan K, McBranch D, Whitten D (2004) Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases. Proc Natl Acad Sci 101:7511–7515

    Article  CAS  Google Scholar 

  88. Rininsland F, Xia W, Wittenburg S, Shi X, Stankewicz C, Achyuthan K, McBranch D, Whitten D (2004) Metal ion-mediated polymer superquenching for highly sensitive detection of kinase and phosphatase activities. Proc Natl Acad Sci 101:15295–15300

    Article  CAS  Google Scholar 

  89. Fan C, Plaxco KW, Heeger AJ (2002) High-efficiency fluorescence quenching of conjugated polymers by proteins. J Am Chem Soc 124:5642–5643

    Article  CAS  Google Scholar 

  90. Kim I-B, Dunkhorst A, Bunz UHF (2005) Nonspecific interactions of a carboxylated-substituted PPE with proteins. A cautionary tale for biosensor applications. Langmuir 21:7985–7989

    Article  CAS  Google Scholar 

  91. Phillips RL, Kim I-B, Carson BE, Tidbeck B, Bai Y, Lowary TL, Tolbert LM, Bunz UHF (2008) Sugar-substituted poly(p-phenyleneethynylene)s: sensitivity enhancement toward lectins and bacteria. Macromolecules 41:7316–7320

    Article  CAS  Google Scholar 

  92. Kim I-B, Phillips R, Bunz UHF (2007) Forced agglutination as a tool to improve the sensory response of a carboxylated poly(p-phenyleneethynylene). Macromolecules 40:814–817

    Article  CAS  Google Scholar 

  93. Fan L-J, Jones WE Jr (2006) Studies of photoinduced electron transfer and energy migration in a conjugated polymer system for fluorescence “turn-on” chemosensor applications. J Phys Chem B 110:7777–7782

    Article  CAS  Google Scholar 

  94. Dwight SJ, Gaylord BS, Hong JW, Bazan GC (2004) Perturbation of fluorescence by nonspecific interactions between anionic poly(phenylenevinylene)s and proteins: implications for biosensors. J Am Chem Soc 126:16850–16859

    Article  CAS  Google Scholar 

  95. Whitten D, Jones R, Bergstedt T, McBranch D, Chen L, Heeger P (2001) From superquenching to biodetection: building sensors based on fluorescent polyelectrolytes. In: Ramamurthy V, Schanze KS (eds) Optical sensors and switches. Marcel Dekker Inc, New York

    Google Scholar 

  96. DiCesare N, Pinto MR, Schanze KS, Lakowicz JR (2002) Saccharide detection based on the amplified fluorescence quenching of a water-soluble poly(phenylene ethynylene) by a boronic acid functionalized benzyl viologen derivative. Langmuir 18:7785–7787

    Article  CAS  Google Scholar 

  97. Thomas SW, Swager TM (2006) Trace hydrazine detection with fluorescent conjugated polymers: a turn-on sensory mechanism. Adv Mater 18:1047–1050

    Article  CAS  Google Scholar 

  98. Smith RC, Tennyson AG, Lim MH, Lippard SJ (2005) Conjugated polymer-based fluorescence turn-on sensor for nitric oxide. Org Lett 7:3573–3575

    Article  CAS  Google Scholar 

  99. Pinto MR, Kristal BM, Schanze KS (2003) A water-soluble poly(phenylene ethynylene) with pendant phosphonate groups. Synthesis, photophysics, and layer-by-layer self-assembled films. Langmuir 19:6523–6533

    Article  CAS  Google Scholar 

  100. Gu Z, Bao Y-J, Zhang Y, Wang M, Shen Q-D (2006) Anionic water-soluble poly(phenylenevinylene) alternating copolymer: high-efficiency photoluminescence and dual electroluminescence. Macromolecules 39:3125–3131

    Article  CAS  Google Scholar 

  101. Montaño GA, Dattelbaum AM, Wang H-L, Shreve AP (2004) Enhanced photoluminescence from poly(phenylene vinylene): dendrimer polyelectrolyte assemblies in solution. Chem Commun 2490–2491

    Google Scholar 

  102. Ho H-A, Boissinot M, Bergeron MG, Corbeil G, Doré K, Boudreau D, Leclerc M (2002) Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew Chem Int Ed 41:1548–1551

    Article  CAS  Google Scholar 

  103. Doré K, Leclerc M, Boudreau D (2006) Investigation of a fluorescence signal amplification mechanism used for the direct molecular detection of nucleic acids. J Fluoresc 16:259–265

    Article  CAS  Google Scholar 

  104. Lévesque I, Leclerc M (1996) Ionochromic and thermochromic phenomena in a regioregular polythiophene derivative bearing oligo(oxyethylene) side chains. Chem Mater 8:2843–2849

    Article  Google Scholar 

  105. Ho H-A, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1385

    Article  CAS  Google Scholar 

  106. Raymond FR, Ho H-A, Peytavi R, Bissonnette L, Boissinot M, Picard FJ, Leclerc M, Bergeron MG (2005) Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnol 5:10

    Article  CAS  Google Scholar 

  107. Nilsson KPR, Rydberg J, Baltzer L, Inganäs O (2003) Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. Proc Natl Acad Sci 100:10170–10174

    Article  CAS  Google Scholar 

  108. Nilsson KPR, Inganäs O (2004) Optical emission of a conjugated polyelectrolyte: calcium-induced conformational changes in calmodulin and calmodulin–calcineurin interactions. Macromolecules 37:9109–9113

    Article  CAS  Google Scholar 

  109. Simon RA Nilsson P (2010) Optical reporting by conjugated polymers via conformational changes. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:389–416

    Google Scholar 

  110. Yasuda A, Yoshizawa M, Kobayashi T (1993) Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy. Chem Phys Lett 209:281–286

    Article  CAS  Google Scholar 

  111. Olmsted JI, Strand M (1983) Fluorescence of polymerized diacetylene bilayer films. J Phys Chem 87:4790–4792

    Article  CAS  Google Scholar 

  112. Reppy MA (2008) Enhancing the emission of polydiacetylene sensing materials through fluorophore addition and energy transfer. J Fluoresc 18:461–471

    Article  CAS  Google Scholar 

  113. Pu K-Y, Liu B Fluorescence reporting based on FRET between conjugated polyelectrolyte and organic dye for biosensor applications. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:417–453

    Google Scholar 

  114. Schlindler F, Lupton JM, Feldmann J, Scherf U (2004) A universal picture of chromophores in π-conjugated polymers derived from single-molecule spectroscopy. Proc Natl Acad Sci 101:14695–147000

    Article  Google Scholar 

  115. Wong KF, Bagchi B, Rossky PJ (2004) Distance and orientation dependence of excitation transfer rates in conjugated systems: beyond the Förster theory. J Phys Chem A 108:5752–5763

    Article  CAS  Google Scholar 

  116. Zheng J, Swager TM (2004) Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes. Chem Commun 2798–2799

    Google Scholar 

  117. Ma G, Muller AM, Bardeen CJ, Cheng Q (2006) Self-assembly combined with photopolymerization for the fabrication of fluorescence “turn-on” vesicle sensors with reversible “on–off” switching properties. Adv Mater 18:55–60

    Article  CAS  Google Scholar 

  118. Ma G, Cheng Q (2006) Manipulating fret with polymeric vesicles: development of a “mix-and-detect” type fluorescence sensor for bacterial toxin. Langmuir 22:6743–6745

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A. Reppy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reppy, M.A. (2010). Structure, Emissive Properties, and Reporting Abilities of Conjugated Polymers. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04701-5_12

Download citation

Publish with us

Policies and ethics