Skip to main content

Abstract

Photosynthate that is produced in a plant’s mature leaves has many uses within the leaf and is also exported as sucrose to non-photosynthetic ‘sink’ organs. The decision-making process that determines how much carbon is allocated to each use is called photosynthate or carbon partitioning. Once it arrives at a sink, the photosynthate is partitioned again for use as an energy source, or to enable growth to occur, or for storage in the form of carbohydrates, proteins and oils. This has considerable impact on the yield of the crop, its nutritional value and its processing properties. Photosynthate partitioning also affects the efficiency of carbon fixation and may become suboptimal in plants because of rapidly changing carbon dioxide levels. It is, therefore, a key target for breeders and biotechnologists. Here, the mechanisms by which photosynthate partitioning is determined are reviewed, including sugar sensing and the action of key metabolic regulators, namely sucrose nonfermenting-1-related protein kinase 1 (SnRK1), hexokinase and components of the trehalose biosynthesis pathway. The importance of the carbon to nitrogen (C:N) balance as a biotechnological target with broad applications, including biofuel production, is discussed and the need to consider metabolic regulation in metabolic engineering programmes is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  CAS  Google Scholar 

  • Bonini BM, Van Vaeck C, Larsson C, Gustafsson L, Ma P, Winderickx J, Van Dijck P, Thevelein JM (2000) Expression of Escherichia coli otsA in a Saccharomyces tps1 mutant restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350:261–268

    Article  PubMed  CAS  Google Scholar 

  • Choury PS, Nelson OE (1976) The enzymatic deficiency conditioned by the Shrunken-1 mutations in maize. Biochem Genet 14:1041–1055

    Article  Google Scholar 

  • Dickinson JR (1999) Carbon metabolism. In: Dickinson JR, Schweizer M (eds) The metabolism and molecular physiology of Saccharomyces cerevisiae. Taylor and Francis, London, pp 23–55

    Google Scholar 

  • Dickinson CC, Altabella T, Chrispeels MJ (1991) Slow growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol 95:420–425

    Article  PubMed  CAS  Google Scholar 

  • Duffus CM, Cochrane MP (1992) Grain structure and composition. In: Shewry PR (ed) Barley. Genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 291–317

    Google Scholar 

  • Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo development. Plant J 29:225–235

    Article  PubMed  CAS  Google Scholar 

  • Fritzius T, Aeschbacher R, Wiemken A, Wingler A (2001) Induction of APL3 expression by trehalose complements the starch-deficient Arabidopsis mutant adg2-1 lacking ApL1, the large subunit of ADP-glucose pyrophosphorylase. Plant Physiol 126:883–889

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Park WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7:1369–1385

    Article  PubMed  CAS  Google Scholar 

  • Giese H, Hopp HE (1984) Influence of nitrogen nutrition on the amount of hordein, protein Z and β-amylase messenger RNA in developing endosperms of barley. Carlsberg Res Comm 49:365–383

    Article  CAS  Google Scholar 

  • Goddijn OJ, Smeekens SCM (1998) Sensing trehalose biosynthesis in plants. Plant J 14:143–146

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761–772

    Article  PubMed  CAS  Google Scholar 

  • Halford NG (2006) Regulation of carbon and amino acid metabolism: roles of sucrose nonfermenting-1-related protein kinase-1 and general control nonderepressible-2-related protein kinase. Adv Bot Res Inc Adv Plant Pathol 43:93–142

    CAS  Google Scholar 

  • Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Paul MJ (2003) Carbon metabolite sensing and signalling. Plant Biotechnol J 1:381–398

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Purcell PC, Hardie DG (1999) Is hexokinase really a sugar sensor in plants? Trends Plant Sci 4:117–120

    Article  PubMed  Google Scholar 

  • Halford NG, Muttucumaru N, Curtis TY, Parry MAJ (2007) Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants. Food Add Contam SI 24:26–36

    Article  CAS  Google Scholar 

  • Harker M, Holmberg M, Clayton JC, Gibbard CL, Wallace AD, Rawlins S, Hellyer SA, Lanot A, Safford R (2003) Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase. Plant Biotechnol J 1:113–121

    Article  PubMed  CAS  Google Scholar 

  • Harter K, Talke-Messerer C, Barz W, Schäfer E (1993) Light and sucrose-dependent gene expression in photomixotrophic cell suspension cultures and protoplasts of rape. Plant J 4:507–516

    Article  CAS  Google Scholar 

  • Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH, MacKintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47:211–223

    Article  PubMed  CAS  Google Scholar 

  • Hey SJ, Powers SJ, Beale M, Hawkins ND, Ward J, Halford NG (2006) Enhanced seed phytosterol accumulation through expression of a modified HMG-CoA reductase. Plant Biotechnol J 4:219–229

    Article  PubMed  CAS  Google Scholar 

  • Hey S, Mayerhofer H, Halford NG, Dickinson JR (2007) DNA sequences from Arabidopsis which encode protein kinases and function as upstream regulators of Snf1 in yeast. J Biol Chem 282:10472–10479

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Kruger DE, Frizzi A, D’Ordine RL, Florida CA, Adams WR, Brown WE, Luethy MH (2005) High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotechnol J 8:555–569

    Article  CAS  Google Scholar 

  • Inoue H, Tanaka A (1978) Comparison of source and sink potentials between wild and cultivated potatoes. J Sci Soil Manage Japan 49:321–327

    Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Article  Google Scholar 

  • Jang J-C, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  PubMed  CAS  Google Scholar 

  • Kirkman MA, Shewry PR, Miflin BJ (1982) The effect of nitrogen nutrition on the lysine content and protein composition of barley seeds. J Sci Food Agric 33:115–127

    Article  CAS  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA 102:11118–11123

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Hofmann B, Schäfer C, Stitt M (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink’ regulation of photosynthesis? Plant J 3:817–828

    Article  CAS  Google Scholar 

  • Laurie S, McKibbin RS, Halford NG (2003) Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an α-amylase (α-Amy2) gene promoter in cultured wheat embryos. J Exp Bot 54:739–747

    Article  PubMed  CAS  Google Scholar 

  • Lu C-A, Lin C-C, Lee K-W, Chen J-L, Ho S-L, Huang L-F, Hsing Y-I, Yu S-M (2007) The SnRK1A protein kinase plays a key role in sugar signalling during germination and seedling growth of rice. Plant Cell 19:2484–2499

    Article  PubMed  CAS  Google Scholar 

  • McKibbin RS, Muttucumaru N, Paul MJ, Powers SJ, Burrell MM, Coates S, Purcell PC, Tiessen A, Geigenberger P, Halford NG (2006) Production of high starch, low glucose potatoes through over-expression of the metabolic regulator, SnRK1. Plant Biotechnol J 4:409–418

    Article  CAS  Google Scholar 

  • Mita S, Suzuki-Fujii K, Nakamura K (1995) Sugar-inducible expression of a gene for β-amylase in Arabidopsis. Plant Physiol 107:895–904

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signalling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Boller T, Wiemken A (1998) Trehalose affects sucrose synthase and invertase activities in soybean (Glycine max L. Merr.) roots. J Plant Physiol 153:255–257

    Google Scholar 

  • Muttucumaru N, Halford NG, Elmore JS, Dodson AT, Parry M, Shewry PR, Mottram DS (2006) The formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat. J Agric Food Chem 54:8951–8955

    Article  PubMed  CAS  Google Scholar 

  • Muttucumaru N, Elmore JS, Curtis T, Mottram DS, Parry MAJ, Halford NG (2008) Reducing acrylamide precursors in raw materials derived from wheat and potato. J Agric Food Chem 56:6167–6172

    Article  PubMed  CAS  Google Scholar 

  • Noubhani A, Bunoust O, Rigoulet M, Thevelein JM (2000) Reconstitution of ethanolic fermentation in permeabilised spheroplasts of wild type and trehalose 6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 267:4566–4576

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Pellny T, Goddijn O (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200

    Article  PubMed  CAS  Google Scholar 

  • Purcell PC, Smith AM, Halford NG (1998) Antisense expression of a sucrose nonfermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J 14:195–202

    Article  CAS  Google Scholar 

  • Radchuk R, Radchuk V, Weschke W, Borisjuk L, Weber H (2006) Repressing the expression of the sucrose nonfermenting-1-related protein kinase gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. Plant Physiol 140:263–278

    Article  PubMed  CAS  Google Scholar 

  • Salanoubat M, Belliard G (1989) The steady-state level of potato sucrose synthase mRNA is dependant on wounding, anaerobiosis and sucrose concentration. Gene 84:181–185

    Article  PubMed  CAS  Google Scholar 

  • Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul MJ (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilisation and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6849–6854

    Article  PubMed  CAS  Google Scholar 

  • Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose-mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879–890

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2:1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1994) Feedback control of gene expression. Photosynth Res 39:427–438

    Article  CAS  Google Scholar 

  • Shewry PR, Franklin J, Parmar S, Smith SJ, Miflin BJ (1983) The effects of sulfur starvation on the amino acid and protein compositions of barley grain. J Cereal Sci 1:21–31

    Article  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Halford NG (2001) Nutritional control of storage protein synthesis in developing grain of wheat and barley. Plant Growth Regul 34:105–111

    Article  CAS  Google Scholar 

  • Sowokinos JR, Varns JL (1992) Induction of sucrose synthase in potato tissue culture: effect of carbon source and metabolic regulators on sink strength. J Plant Physiol 139:672–679

    CAS  Google Scholar 

  • Sweetlove LJ, Hill SA (2000) Source metabolism dominates the control of source to sink carbon flux in tuberising potato plants throughout the diurnal cycle and under a range of environmental conditions. Plant Cell Environ 23:523–529

    Article  CAS  Google Scholar 

  • Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    Article  PubMed  CAS  Google Scholar 

  • Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford NG, Geigenberger P (2003) Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J 35:490–500

    Article  PubMed  CAS  Google Scholar 

  • Trethewey RN, Geigenberger P, Riedel K, Hajirezaei M-R, Sonnewald U, Stitt M, Riesmeier JW, Willmitzer L (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J 15:109–118

    Article  PubMed  CAS  Google Scholar 

  • van Oosten J-J, Besford RT (1996) Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression: climate of opinion. Photosynth Res 48:353–365

    Article  CAS  Google Scholar 

  • von Schaewen A, Stitt M, Sonnewald U, Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9:3033–3044

    PubMed  CAS  Google Scholar 

  • Weber H, Buchner P, Borisjuk L, Wobus U (1996) Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose phosphate synthase and sucrose synthase: expression patterns, metabolic regulation and implications for seed development. Plant J 9:841–850

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA (2000) Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol 124:105–114

    Article  PubMed  CAS  Google Scholar 

  • Yu S-M, Kuo Y-H, Sheu G, Sheu Y-J, Liu L-F (1991) Metabolic derepression of α-amylase gene expression in suspension-cultured cells of rice. J Biol Chem 266:21131–21137

    PubMed  CAS  Google Scholar 

  • Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  PubMed  CAS  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7:97–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Halford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halford, N.G. (2010). Photosynthate Partitioning. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04670-4_4

Download citation

Publish with us

Policies and ethics