Skip to main content

Hereditäre und genetisch bedingte Glomerulopathien

  • Chapter
  • First Online:
Pathologie

Zusammenfassung

Das Kapitel behandelt die primären Glomerulopathien mit ihren meist monogenen Ursachen sowie die glomerulären Läsionsmuster bei syndromalen Erkrankungen. Es werden neueste genetische Erkenntnisse beleuchtet, wobei sowohl monogene als auch komplexe Mutationen in Korrelation zum Phänotyp der Nierenerkrankung gestellt werden. Da diese Befunde zunehmend zur Reklassifizierung der genetischen Glomerulopathien führen, wird bereits auf die neuesten Klassifikationen eingegangen. Für die diagnostische Praxis stehen exemplarisches Bildmaterial und differentialdiagnostische Tabellen zur Verfügung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Alport AC (1927) Hereditary familial congenital haemorrhagic nephritis. Br Med J 1:504–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Armstead SI, Hellmark T, Wieslander J, Zhou XJ, Saxena R, Rajora NA (2013) Case of Alport syndrome with posttransplant antiglomerular basement membrane disease despite negative antiglomerular basement membrane antibodies by EIA treated with plasmapheresis and intravenous immunoglobulin. Case Rep Transplant 2013:164016

    PubMed Central  PubMed  Google Scholar 

  3. Arrondel C, Vodovar N, Knebelmann B, Grünfeld JP, Gubler MC, Antignac C, Heidet L (2002) Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am Soc Nephrol 13:65–74

    CAS  PubMed  Google Scholar 

  4. Aylsworth AS, Thomas GH, Hood JL, Malouf N, Libert J (1980) A severe infantile sialidosis: clinical, biochemical, and microscopic features. J Pediatr 96:662–668

    Article  CAS  PubMed  Google Scholar 

  5. Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, Gregory MC, Skolnick MH, Atkin CL, Tryggvason K (1990) Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248(4960):1224–1227

    Article  CAS  PubMed  Google Scholar 

  6. Bennett WM, Musgrave JE, Campbell RA, Elliot D, Cox R, Brooks RE, Lovrien EW, Beals RK, Porter GA (1973) The nephropathy of the nail-patella syndrome. Clinicopathologic analysis of 11 kindred. Am J Med 54:304–319

    Article  CAS  PubMed  Google Scholar 

  7. Benson MD (2005) Ostertag revisited: the inherited systemic amyloidoses without neuropathy. Amyloid 12:75–87

    Article  CAS  PubMed  Google Scholar 

  8. Berkovic SF, Dibbens LM, Oshlack A et al (2008) Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 82:673–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Boerkoel CF, O’Neill S, Andre JL et al (2000) Manifestations and treatment of Schimke immuno-osseous dysplasia: 14 new cases and a review of the literature. Eur J Pediatr 159:1–7

    Article  CAS  PubMed  Google Scholar 

  10. Boutaud A, Borza DB, Bondar O, Gunwar S, Netzer KO, Singh N, Ninomiya Y, Sado Y, Noelken ME, Hudson BG (2000) Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J Biol Chem 275:30716–30724

    Article  CAS  PubMed  Google Scholar 

  11. Boyer O, Benoit G, Gribouval O et al (2011) Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 22:239–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Calabresi L, Simonelli S, Gomaraschi M, Franceschini G (2012) Genetic lecithin:cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis 222:299–306

    Article  CAS  PubMed  Google Scholar 

  13. Caridi G, Perfumo F, Ghiggeri GM (2005) (Podocin) mutations in nephrotic syndrome. Clinical spectrum and fine mechanisms. Pediatr Res NPHS2(57):54R–61R

    Article  Google Scholar 

  14. Castelletti F, Donadelli R, Banterla F et al (2008) Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci USA 105:2538–2543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. D’Agati VD (2012) Pathobiology of focal segmental glomerulosclerosis: new developments. Curr Opin Nephrol Hypertens 21:243–250

    Article  PubMed  Google Scholar 

  16. Dember LM (2006) Amyloidosis-associated kidney disease. J Am Soc Nephrol 17:3458–3471

    Article  CAS  PubMed  Google Scholar 

  17. Dietrich A, Matejas V, Bitzan M et al (2008) Analysis of genes encoding laminin beta2 and related proteins in patients with Galloway-Mowat syndrome. Pediatr Nephrol 23:1779–1786

    Article  PubMed  Google Scholar 

  18. Dong F, Li S, Pujol-Moix N et al (2005) Genotype-phenotype correlation in MYH9-related thrombocytopenia. Br J Haematol 130:620–627

    Article  CAS  PubMed  Google Scholar 

  19. Dragon-Durey MA, Fremeaux-Bacchi V, Loirat C et al (2004) Heterozygous and homozygous factor h deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J Am Soc Nephrol 15:787–795

    Article  CAS  PubMed  Google Scholar 

  20. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362:629–639

    Article  PubMed  Google Scholar 

  21. Foster K, Markowitz GS, D’Agati VD (2005) Pathology of thin basement membrane nephropathy. Semin Nephrol 25:149–158

    Article  PubMed  Google Scholar 

  22. Freedman BI, Kopp JB, Langefeld CD et al (2010) The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol 21:1422–1426

    Article  CAS  PubMed  Google Scholar 

  23. Gbadegesin R, Hinkes BG, Hoskins BE et al (2008) Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant 23:1291–1297

    Article  CAS  PubMed  Google Scholar 

  24. Gbadegesin R, Lavin P, Janssens L et al (2010) A new locus for familial FSGS on chromosome 2p. J Am Soc Nephrol 21:1390–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gjone E (1981) Familial lecithin:cholesterol acyltransferase deficiency – a new metabolic disease with renal involvement. Adv Nephrol Necker Hosp 10:167–185

    CAS  PubMed  Google Scholar 

  26. Haas M, Meehan SM, Karrison TG, Spargo BH (1997) Changing etiologies of unexplained adult nephrotic syndrome: a comparison of renal biopsy findings from 1976–1979 and 1995–1997. Am J Kidney Dis 30:621–631

    Article  CAS  PubMed  Google Scholar 

  27. Habib R, Gubler MC, Antignac C, Gagnadoux MF (1993) Diffuse mesangial sclerosis: a congenital glomerulopathy with nephrotic syndrome. Adv Nephrol Necker Hosp 22:43–57

    CAS  PubMed  Google Scholar 

  28. Habib R, Loirat C, Gubler MC, Niaudet P, Bensman A, Levy M, Broyer M (1985) The nephropathy associated with male pseudohermaphroditism and Wilms’ tumor (Drash syndrome): a distinctive glomerular lesion – report of 10 cases. Clin Nephrol 24:269–278

    CAS  PubMed  Google Scholar 

  29. Has C, Sparta G, Kiritsi D et al (2012) Integrin alpha3 mutations with kidney, lung, and skin disease. N Engl J Med 366:1508–1514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hasselbacher K, Wiggins RC, Matejas V et al (2006) Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int 70:1008–1012

    Article  CAS  PubMed  Google Scholar 

  31. Hastie ND (1992) Dominant negative mutations in the Wilms tumour (WT1) gene cause Denys-Drash syndrome – proof that a tumour-suppressor gene plays a crucial role in normal genitourinary development. Hum Mol Genet 1:293–295

    Article  CAS  PubMed  Google Scholar 

  32. Heeringa SF, Chernin G, Chaki M et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119:e907–919

    Article  PubMed  Google Scholar 

  34. Hopfer DH, Mihatsch MJ (2010) Hereditäre Nephropathien. Nephrologe 5:508–516

    Article  Google Scholar 

  35. Huttunen NP, Rapola J, Vilska J, Hallman N (1980) Renal pathology in congenital nephrotic syndrome of Finnish type: a quantitative light microscopic study on 50 patients. Int J Pediatr Nephrol 1:10–16

    CAS  PubMed  Google Scholar 

  36. Imbasciati E, Paties C, Scarpioni L, Mihatsch MJ (1986) Renal lesions in familial lecithin-cholesterol acyltransferase deficiency. Ultrastructural heterogeneity of glomerular changes. Am J Nephrol 6:66–70

    Article  CAS  PubMed  Google Scholar 

  37. Ivanyi B, Pap R, Ondrik Z (2006) Thin basement membrane nephropathy: diffuse and segmental types. Arch Pathol Lab Med 130:1533–1537

    PubMed  Google Scholar 

  38. Jais JP, Knebelmann B, Giatras I et al (2000) X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol 11:649–657

    CAS  PubMed  Google Scholar 

  39. Jais JP, Knebelmann B, Giatras I et al (2003) X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a ″European Community Alport Syndrome Concerted Action″ study. J Am Soc Nephrol 14:2603–2610

    Article  PubMed  Google Scholar 

  40. Jalanko H (2009) Congenital nephrotic syndrome. Pediatr Nephrol 24:2121–2128

    Article  PubMed Central  PubMed  Google Scholar 

  41. Jefferson JA, Lemmink HH, Hughes AE, Hill CM, Smeets HJ, Doherty CC, Maxwell AP (1997) Autosomal dominant Alport syndrome linked to the type IV collage alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol Dial Transplant 12:1595–1599

    Article  CAS  PubMed  Google Scholar 

  42. Karamatic Crew V, Burton N, Kagan A et al (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223

    Article  PubMed  Google Scholar 

  43. Kestilä M, Lenkkeri U, Männikkö M et al (1998) Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    Article  PubMed  Google Scholar 

  44. Kopp JB, Smith MW, Nelson GW et al (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40:1175–1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J (1997) The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 38:191–205

    CAS  PubMed  Google Scholar 

  46. Kuusniemi A-M, Qvist E, Sun Y, Patrakka J, Rönnholm K, Karikoski R, Jalanko H (2007) Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type (NPHS1). Transplantation 83:1316–1323

    Article  PubMed  Google Scholar 

  47. Kuusniemi AM, Merenmies J, Lahdenkari AT et al (2006) Glomerular sclerosis in kidneys with congenital nephrotic syndrome (NPHS1). Kidney Int 70:1423–1431

    Article  CAS  PubMed  Google Scholar 

  48. Lemaire M, Fremeaux-Bacchi V, Schaefer F et al (2013) Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 45:531–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Lemley KV (2009) Kidney disease in nail-patella syndrome. Pediatr Nephrol 24:2345–2354

    Article  PubMed Central  PubMed  Google Scholar 

  50. Liapis H, Gökden N, Hmiel P, Miner JH (2002) Histopathology, ultrastructure, and clinical phenotypes in thin glomerular basement membrane disease variants. Hum Pathol 33:836–845

    Article  PubMed  Google Scholar 

  51. Lobato L, Rocha A (2012) Transthyretin amyloidosis and the kidney. Clin J Am Soc Nephrol 7:1337–1346

    Article  PubMed  Google Scholar 

  52. Matejas V, Hinkes B, Alkandari F et al (2010) Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat 31:992–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Mazzucco G, Barsotti P, Muda AO, Fortunato M, Mihatsch M, Torri-Tarelli L, Renieri A, Faraggiana T, De Marchi M, Monga G (1998) Ultrastructural and immunohistochemical findings in Alport’s syndrome: a study of 108 patients from 97 Italian families with particular emphasis on COL4A5 gene mutation correlations. J Am Soc Nephrol 9:1023–1031

    CAS  PubMed  Google Scholar 

  54. Meleg-Smith S, Magliato S, Cheles M, Garola RE, Kashtan CE (1998) X-linked Alport syndrome in females. Hum Pathol 29:404–408

    Article  CAS  PubMed  Google Scholar 

  55. Meloni I, Vitelli F, Pucci L et al (2002) Alport syndrome and mental retardation: clinical and genetic dissection of the contiguous gene deletion syndrome in Xq22.3 (ATS-MR). J Med Genet 39:359–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Merchant SN, Burgess BJ, Adams JC et al (2004) Temporal bone histopathology in alport syndrome. Laryngoscope 114:1609–1618

    Article  PubMed  Google Scholar 

  57. Miner JH, Patton BL (1999) Laminin-11. Int J Biochem Cell Biol 31:811–816

    Article  CAS  PubMed  Google Scholar 

  58. Mochizuki T, Lemmink HH, Mariyama M, Antignac C, Gubler MC, Pirson Y, Verellen-Dumoulin C, Chan B, Schröder CH, Smeets HJ (1994) Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet 8:77–81

    Article  CAS  PubMed  Google Scholar 

  59. Moeller MJ (2007) Dynamics at the slit diaphragm – is nephrin actin’? Nephrol Dial Transplant 22:37–39

    Article  PubMed  Google Scholar 

  60. Morrison AA, Viney RL, Saleem MA, Ladomery MR (2008) New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes. Am J Physiol Renal Physiol 295:F12–17

    Article  CAS  PubMed  Google Scholar 

  61. Niaudet P, Gubler MC (2006) WT1 and glomerular diseases. Pediatr Nephrol 21:1653–1660

    Article  PubMed  Google Scholar 

  62. Noone D, Licht C (2013) An update on the pathomechanisms and future therapies of Alport syndrome. Pediatr Nephrol 2013 28:1025–1036

    Article  Google Scholar 

  63. Noris M, Remuzzi G (2009) Atypical hemolytic-uremic syndrome. N Engl J Med 361:1676–1687

    Article  CAS  PubMed  Google Scholar 

  64. Nso Roca AP, Peña Carrión A, Gutiérrez BM, García Meseguer C, García Pose A, Navarro M (2009) Evolutive study of children with diffuse mesangial sclerosis. Pediatr Nephrol 24:1013–1019

    Article  PubMed  Google Scholar 

  65. Ozaltin F, Ibsirlioglu T, Taskiran EZ et al (2011) Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet 89:139–147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ozaltin F, Li B, Rauhauser A et al (2013) DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol 24:377–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Patrakka J, Tryggvason K (2007) Nephrin – a unique structural and signaling protein of the kidney filter. Trends Mol Med 13:396–403

    Article  CAS  PubMed  Google Scholar 

  68. Piscione TD, Licht C (2011) Genetics of proteinuria: an overview of gene mutations associated with nonsyndromic proteinuric glomerulopathies. Adv Chronic Kidney Dis 18:273–289

    Article  PubMed  Google Scholar 

  69. Rana K, Wang YY, Buzza M, Tonna S, Zhang KW, Lin T, Sin L, Padavarat S, Savige J (2005) The genetics of thin basement membrane nephropathy. Semin Nephrol 25:163–170

    Article  CAS  PubMed  Google Scholar 

  70. Reiser J, Polu KR, Moller CC et al (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Santin S, Garcia-Maset R, Ruiz P et al (2009) Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int 76:1268–1276

    Article  CAS  PubMed  Google Scholar 

  72. Savoia A, Balduini CL (1993) MYH9-Related Disorders. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (Hrsg) GeneReviews®. University of Washington, Seattle, Seattle (WA), S 1993–2014

    Google Scholar 

  73. Sethi S, Fervenza FC (2012) Membranoproliferative glomerulonephritis – a new look at an old entity. N Engl J Med 366:1119–1131

    Article  CAS  PubMed  Google Scholar 

  74. Sinha MD, Horsfield C, Komaromy D, Booth CJ, Champion MP (2009) Congenital disorders of glycosylation: a rare cause of nephrotic syndrome. Nephrol Dial Transplant 24:2591–2594

    Article  CAS  PubMed  Google Scholar 

  75. Spear GS, Slusser RJ (1972) Alport’s syndrome. Emphasizing electron microscopic studies of the glomerulus. Am J Pathol 69:213–224

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Spear GS (1990) Morphologic alterations and biochemical studies of the glomerular basement membrane in Alport syndrome. Contrib Nephrol 80:41–46

    Article  CAS  PubMed  Google Scholar 

  77. Taguchi T, Takebayashi S, Nishimura M, Tsuru N (1988) Nephropathy of nail-patella syndrome. Ultrastruct Pathol 12:175–183

    Article  CAS  PubMed  Google Scholar 

  78. Taylor CM, Chua C, Howie AJ, Risdon RA (2004) Clinico-pathological findings in diarrhoea-negative haemolytic uraemic syndrome. Pediatr Nephrol 19:419–425

    Article  CAS  PubMed  Google Scholar 

  79. Wartiovaara J, Ofverstedt LG, Khoshnoodi J et al (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114:1475–1483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Welsh GI, Saleem MA (2010) Nephrin-signature molecule of the glomerular podocyte? J Pathol 220:328–337

    CAS  PubMed  Google Scholar 

  81. Witzgall R (2008) How are podocytes affected in nail-patella syndrome? Pediatr Nephrol 23:1017–1020

    Article  PubMed Central  PubMed  Google Scholar 

  82. Zenker M, Machuca E, Antignac C (2009) Genetics of nephrotic syndrome: new insights into molecules acting at the glomerular filtration barrier. J Mol Med (Berl) 87:849–857

    Article  CAS  Google Scholar 

  83. Zhou J, Mochizuki T, Smeets H et al (1993) Deletion of the paired alpha 5(IV) and alpha 6(IV) collagen genes in inherited smooth muscle tumors. Science 261:1167–1169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zenker Prof. Dr. med. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zenker, M., Amann, K., Kain, R., Hopfer, H. (2016). Hereditäre und genetisch bedingte Glomerulopathien. In: Amann, K., Kain, R., Klöppel, G. (eds) Pathologie. Pathologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04566-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04566-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04565-3

  • Online ISBN: 978-3-642-04566-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics