Skip to main content

A SCA-Based Model for Open Crowd Aggregation

  • Conference paper
  • First Online:
Pedestrian and Evacuation Dynamics 2008

Summary

This paper proposes a SCA-based model for crowd dynamics phenomena. SCA (Situated Cellular Agents) is a modeling and simulation approach based on Multi Agent Systems principles that is characterized by the representation of an explicit spatial structure. This paper is focused on the crowd aggregation phenomenon described by Elias Canetti. This work will provide a methodology example of translation of a social theory into a SCA-based computational model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Still. Crowd Dynamics. PhD thesis, Dept. of Mathematics, University of Warwick, 2000.

    Google Scholar 

  2. J. Ferber. Multi-Agent Systems, Addison-Wesley, Reading, 1999.

    Google Scholar 

  3. S. Bandini, S. Manzoni, and C. Simone. Enhancing cellular spaces by multilayered multi agent situated systems. In Cellular Automata, Proceedings of 5th International Conference on Cellular Automata for Research and Industry (ACRI 2002), Geneva (Switzerland), October 9–11, 2002, Volume 2493 of Lecture Notes in Computer Science, Springer, Berlin, 2002.

    Google Scholar 

  4. S. Bandini, M.L. Federici, S. Manzoni, and G. Vizzari. Pedestrian and crowd dynamics simulation: Testing SCA on paradigmatic cases of emerging coordination in negative interaction conditions. In Proc. of PACT07, 2007.

    Google Scholar 

  5. E. Canetti. Crowds and Power, Farrar, Straus and Giroux, New York, 1984.

    Google Scholar 

  6. D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Phys. Rev. E 51:4282–4287, 1995.

    Article  Google Scholar 

  7. D. Helbing, J. Keltsch, and P. Molnar. Modelling the evolution of human trail systems. Nature, 338:47–50, 1997.

    Article  Google Scholar 

  8. S. Hoogendoorn and P.H.L. Bovy. Gas-kinetic modeling and simulation of pedestrian flows. Transportation Research Record, 1710:28–36, 2000.

    Article  Google Scholar 

  9. D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic. Nature, 407:487–490, 2000.

    Article  Google Scholar 

  10. A. Schadschneider. Cellular automaton approach to pedestrian dynamics—theory. In Pedestrian and Evacuation Dynamics, eds. M. Schreckenberg and S. Sharma, pages 75–85. Springer, Berlin, 2002.

    Google Scholar 

  11. A. Burstedde, A. Kirchner, K. Klauck, A. Schadschneider, and J. Zittartz. Cellular automaton approach to pedestrian dynamics—applications. In Pedestrian and Evacuation Dynamics, eds. M. Schreckenberg, S. Sharma, pages 87–97. Springer, Berlin, 2002.

    Google Scholar 

  12. M. Schreckenberg and S. Sharma (eds.). Pedestrian and Evacuation Dynamics, Springer, Berlin, 2002.

    MATH  Google Scholar 

  13. V.J. Blue and J. Adler. Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Transportation Research Part B, 35:293–312, 2001.

    Article  Google Scholar 

  14. H. Klüpfel. A Cellular Automaton Model for Crowd Movement and Egress Simulation. PhD thesis, Universität Duisburg-Essen, 2003.

    Google Scholar 

  15. S. Morishita and T. Shiraishi. Evaluation of billboards based on pedestrian flow in the concourse of the station. In Proc. of 7th International Conference on Cellular Automata (ACRI 2006), pages 716–719, 2006.

    Google Scholar 

  16. M.C. Toyama, A.L.C. Bazzan, and R. da Silva. An agent-based simulation of pedestrian dynamics: from lane formation to auditorium evacuation. In Proc. of AAMAS 06, pages 108–110, 2006.

    Google Scholar 

  17. F. Klugl and G. Rindsfuser. Large-scale agent-based pedestrian simulation. In Multiagent System Technologies, pages 145–156, 2007.

    Google Scholar 

  18. P. Torrens. Cellular automata and multi-agent systems as planning support tools. In Planning Support Systems in Practice, pages 205–222, 2002.

    Google Scholar 

  19. M. Batty, H. Couclelis, and M. Eichen. Urban systems as cellular automata. Environment and Planning B, 24:159–164, 1997.

    Google Scholar 

  20. S. Bandini, S. Manzoni, and G. Vizzari. Towards a platform for MMASS-based simulations: focusing on field diffusion. Applied Artificial Intelligence, 20:327–351, 2006.

    Article  Google Scholar 

  21. S. Bandini, S. Manzoni, G. Pavesi, and C. Simone. L*MASS: A language for situated multi-agent systems. In Proc. of the 7th Congress of the Italian Association for Artificial Intelligence (AI*IA 2001), Volume 2175, 2001.

    Google Scholar 

  22. H. Blumer. Collective Behavior, Irvington Publishers, New York, 1993. 1st edition 1951.

    Google Scholar 

  23. G. Le Bon. The Crowd: a Study of the Popular Mind, Dover, New York, 2002. 1st edition 1895.

    Google Scholar 

  24. L.H. Turner and L.M. Killian. Collective Behavior, Prentice-Hall, New York, 1987.

    Google Scholar 

  25. L. Levy. A study of sports crowd behavior: The case of the great pumpkin incident. Journal of Sport and Social Issues, 13:69–91, 1989.

    Article  Google Scholar 

  26. S. Bandini and M. Magagnini. Pattern control in the generation of artificial percolation beds: a cellular automata approach. In ACRI2000, pages 1–10, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Bandini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bandini, S., Federici, M.L., Manzoni, S., Redaelli, S. (2010). A SCA-Based Model for Open Crowd Aggregation. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04504-2_37

Download citation

Publish with us

Policies and ethics