Skip to main content

Toward Smooth Movement of Crowds

  • Conference paper
  • First Online:
Pedestrian and Evacuation Dynamics 2008

Summary

“Jamology” is an interdisciplinary research of all sorts of jams, e.g. those of vehicles, pedestrians, ants, etc. Our model of pedestrians, called the floor field model, is based on this study, and it is a two-dimensional generalization of an ant trail model. It is a rule-based cellular automaton model, and efficient in computations since the long-range interaction between pedestrians is imitated by the memory of the floor of only neighboring cells. Recently several generalizations of this model are proposed to make the model more realistic. We use an extended model to study how to make crowd movement smooth. Not only computer simulations but also experiments are shown in this paper. Introduction of pedestrians’ anticipation into the model affects the crowd movement significantly, and leads the counterflow smooth. Moreover it is clearly shown experimentally that evacuation dynamics near a bottleneck becomes smooth if we put an obstacle at a suitable place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Nishinari, Y. Okada, A. Schadschneider, and D. Chowdhury. Intracellular transport of single-headed molecular motors KIF1A. Phys. Rev. Lett., 95:118101, 2005.

    Article  Google Scholar 

  2. D. Helbing, S. Lämmer, U. Witt, and T. Brenner. Network-induced oscillatory behavior in material flow networks and irregular business cycles. Phys. Rev. E, 70(5):56118, 2004.

    Article  Google Scholar 

  3. D. Chowdhury, L. Santen, and A. Schadschneider. Statistical physics of vehicular traffic and some related systems. Phys. Rep., 329:199, 2000.

    Article  MathSciNet  Google Scholar 

  4. D. Helbing. Traffic and related self-driven many-particle systems. Rev. Mod. Phys., 73:1067, 2001.

    Article  Google Scholar 

  5. D. Chowdhury, K. Nishinari, and A. Schadschneider. Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Transit., 77(5):601–624, 2004.

    Article  Google Scholar 

  6. D. Chowdhury, A. Schadschneider, and K. Nishinari. Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev., 2(4):318–352, 2005.

    Article  Google Scholar 

  7. D. Chowdhury, V. Guttal, K. Nishinari, and A. Schadschneider. A cellular-automata model of flow in ant trails: non-monotonic variation of speed with density. J. Phys. A, Math. Gen., 35:L573–L577, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Kunwar, A. John, K. Nishinari, A. Schadschneider, and D. Chowdhury. Collective traffic-like movement of ants on a trail: Dynamical phases and phase transitions. J. Phys. Soc. Jpn., 73:2979–2985, 2004.

    Article  MATH  Google Scholar 

  9. A. Tomoeda, K. Nishinari, D. Chowdhury, and A. Schadschneider. An information-based traffic control in a public conveyance system: Reduced clustering and enhanced efficiency. Physica A, 384:600–612, 2007.

    Article  Google Scholar 

  10. D.E. Wolf, M. Schreckenberg, and A. Bachem (Eds.). Traffic and Granular Flow. World Scientific, Singapore, 1996.

    Google Scholar 

  11. M. Schreckenberg and S.D. Sharma (Eds.). Pedestrian and Evacuation Dynamics. Springer, Berlin, 2001.

    Google Scholar 

  12. D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic. Nature, 407:487–490, 2000.

    Article  Google Scholar 

  13. S.P. Hoogendoorn and P.H.L. Bovy. Pedestrian route-choice and activity scheduling theory and models. Transp. Res. B, 38:169–190, 2004.

    Article  Google Scholar 

  14. G. Antonini, M. Bierlaire, and M. Weber. Discrete choice models of pedestrian walking behavior. Transp. Res. B, 40:667–687, 2006.

    Article  Google Scholar 

  15. C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A, 295:507–525, 2001.

    Article  MATH  Google Scholar 

  16. A. Kirchner and A. Schadschneider. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A, 312:260–276, 2002.

    Article  MATH  Google Scholar 

  17. D. Yanagisawa and K. Nishinari. Mean-field theory for pedestrian outflow through an exit. Phys. Rev. E, 76:061117, 2007.

    Article  Google Scholar 

  18. K. Nishinari, A. Kirchner, A. Namazi, and A. Schadschneider. Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst., E87-D:726–732, 2004.

    Google Scholar 

  19. C.M. Henein and T. White. Macroscopic effects of microscopic forces between agents in crowd models. Physica A, 373:694–712, 2007.

    Article  Google Scholar 

  20. A. Kirchner, K. Nishinari, and A. Schadschneider. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E, 67:056122, 2003.

    Article  Google Scholar 

  21. Li Jian, Yang Lizhong, and Zhao Daoliang. Simulation of bi-direction pedestrian movement in corridor. Physica A, 354:619–628, 2005.

    Article  Google Scholar 

  22. D. Yanagisawa, A. Tomoeda, and K. Nishinari. Conflicts at an exit in pedestrian dynamics. In Pedestrian and Evacuation Dynamics 2008. Springer, Berlin, 2010.

    Google Scholar 

  23. J. Biarez and M. Gourves (Eds.). Powders and Grains: Proceedings of the International Conference on Micromechanics of Granular. Balkema, Rotterdam, 1990.

    Google Scholar 

  24. D. Helbing, A. Johansson, J. Mathiesen, M.H. Jensen, and A. Hansen. Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett., 97:168001, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryousuke Nishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishinari, K., Suma, Y., Yanagisawa, D., Tomoeda, A., Kimura, A., Nishi, R. (2010). Toward Smooth Movement of Crowds. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04504-2_26

Download citation

Publish with us

Policies and ethics