Skip to main content

The Lyapunov Characteristic Exponents and Their Computation

  • Chapter
  • First Online:
Dynamics of Small Solar System Bodies and Exoplanets

Part of the book series: Lecture Notes in Physics ((LNP,volume 790))

Abstract

We present a survey of the theory of the Lyapunov Characteristic Exponents (LCEs) for dynamical systems, as well as of the numerical techniques developed for the computation of the maximal, of few and of all of them. After some historical notes on the first attempts for the numerical evaluation of LCEs, we discuss in detail the multiplicative ergodic theorem of Oseledec [102], which provides the theoretical basis for the computation of the LCEs. Then, we analyze the algorithm for the computation of the maximal LCE, whose value has been extensively used as an indicator of chaos, and the algorithm of the so-called standard method, developed by Benettin et al. [14], for the computation of many LCEs. We also consider different discrete and continuous methods for computing the LCEs based on the QR or the singular value decomposition techniques. Although we are mainly interested in finite-dimensional conservative systems, i.e., autonomous Hamiltonian systems and symplectic maps, we also briefly refer to the evaluation of LCEs of dissipative systems and time series. The relation of two chaos detection techniques, namely the fast Lyapunov indicator (FLI) and the generalized alignment index (GALI), to the computation of the LCEs is also discussed.

For want of a nail the shoe was lost.

For want of a shoe the horse was lost.

For want of a horse the rider was lost.

For want of a rider the battle was lost.

For want of a battle the kingdom was lost.

And all for the want of a horseshoe nail.

For Want of a Nail (proverbial rhyme)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, L., Bridges, T.J.: Numerical exterior algebra and the compound matrix method. Numerische Mathematik 92, 197–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonopoulos, C., Bountis, T.: Detecting order and chaos by the linear dependence index (LDI) method. ROMAI J. 2, 1–13 (2006)

    MathSciNet  Google Scholar 

  3. Antonopoulos, C., Bountis, T., Skokos, Ch. Chaotic dynamics of N-degree of freedom Hamiltonian systems. Int. J. Bif. Chaos 16, 1777–1793 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bario, R.: Sensitivity tools vs. Poincaré sections. Chaos Solit. Fract. 25, 711–726 (2005)

    Article  ADS  Google Scholar 

  5. Bario, R.: Painting chaos: a gallery of sensitivity plots of classical problems. Int. J. Bif. Chaos 16, 2777–2798 (2006)

    Article  Google Scholar 

  6. Bario, R., Borczyk, W., Breiter, S.: Spurious structures in chaos indicators maps. Chaos Solit. Fract. (in press) (2009)

    Google Scholar 

  7. Barreira, L., Pesin, Y.: Smooth ergodic theory and nonuniformly hyperbolic dynamics. In: Hasselblatt, B., Katok, A. (eds.): Handbook of Dynamical Systems, vol. 1B, 57–263. Elsevier (2006)

    Google Scholar 

  8. Benettin, G., Strelcyn, J.-M.: Numerical experiments of the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy. Phys. Rev. A 17, 773–785 (1978)

    Article  ADS  Google Scholar 

  9. Benettin, G., Galgani, L.: Lyapunov characteristic exponents and stochasticity. In: Laval, G., Grésillon, D. (eds.): Intrinsic Stochasticity in Plasmas, 93–114, Edit. Phys. Orsay (1979)

    Google Scholar 

  10. Benettin, G., Galgani, L., Strelcyn, J.-M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338–2344 (1976)

    Article  ADS  Google Scholar 

  11. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Tous les nombres caractéristiques sont effectivement calculables. C. R. Acad. Sc. Paris Sér. A 286, 431–433 (1978)

    MathSciNet  ADS  MATH  Google Scholar 

  12. Benettin, G., Froeschlé, C., Scheidecker, J.P.: Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom. Phys. Rev. A 19, 2454–2460 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  13. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: theory. Meccanica March: 9–20 (1980)

    Google Scholar 

  14. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.–M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 2: Numerical application. Meccanica March: 21–30 (1980)

    Google Scholar 

  15. Bountis, T., Manos, T., Christodoulidi, H.: Application of the GALI method to localization dynamics in nonlinear systems. J. Comp. Appl. Math. 227, 17–26 (2009), nlin.CD/0806.3563 (2008)

    Google Scholar 

  16. Bourbaki, N.: Éléments de mathématique, Livre II: Algèbre, Chapitre 3. Hermann, Paris (1958)

    Google Scholar 

  17. Brown, R., Bryant, P., Abarbanel, H.D.I.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43, 2787–2806 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  18. Bridges, T.J., Reich, S.: Computing Lyapunov exponents on a Stiefel manifold. Physica D 156, 219–238 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Burns, K., Donnay, V.: Embedded surfaces with ergodic geodesic flow. Int. J. Bif. Chaos 7, 1509–1527 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carbonell, F., Jimenez, J.C., Biscay, R.: A numerical method for the computation of the Lyapunov exponents of nonlinear ordinary differential equations. Appl. Math. Comput. 131, 21–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Casartelli, M., Diana, E., Galgani, L., Scotti, A.: Numerical computations on a stochastic parameter related to the Kolmogorov entropy. Phys. Rev. A 13, 1921–1925 (1976)

    Article  ADS  Google Scholar 

  22. Casati, G., Ford, J.: Stochastic transition in the unequal-mass Toda lattice. Phys. Rev. A 12, 1702–1709 (1975)

    Article  ADS  Google Scholar 

  23. Casati, G., Chirikov, B.V., Ford, J.: Marginal local instability of quasi-periodic motion. Phys. Let. A 77, 91–94 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  24. Chen, Z.–M., Djidjeli, K., Price, W.G.: Computing Lyapunov exponents based on the solution expression of the variational system. Appl. Math. Comput. 174, 982–996 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chernov, N., Markarian, R.: Chaotic billiards. Mathematical Surveys and Monographs, Vol. 127. American Mathematical Society (2006)

    Google Scholar 

  26. Christiansen, F., Rugh, H.H.: Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization. Nonlinearity 10, 1063–1072 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Christodoulidi, H., Bountis, T.: Low-dimensional quasiperiodic motion in Hamiltonian systems. ROMAI J. 2, 37–44 (2006)

    MathSciNet  Google Scholar 

  28. Cincotta, P.M., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials-I. Astron. Astrophs. Supp. Ser. 147, 205–228 (2000)

    Article  ADS  Google Scholar 

  29. Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 151–178 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin Heidelberg New York (2002)

    MATH  Google Scholar 

  31. Contopoulos, G., Giorgilli, A.: Bifurcations and complex instability in a 4-dimensional symplectic mapping. Meccanica 23, 19–28 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Contopoulos, G., Voglis, N.: Spectra of stretching numbers and helicity angles in dynamical systems. Cel. Mech. Dyn. Astron. 64, 1–20 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Contopoulos, G., Voglis, N.: A fast method for distinguishing between ordered and chaotic orbits. Astron. Astrophs. 317, 73–81 (1997)

    ADS  Google Scholar 

  34. Contopoulos, G., Galgani, L., Giorgilli, A.: On the number of isolating integrals in Hamiltonian systems. Phys. Rev. A 18, 1183–1189 (1978)

    Article  ADS  Google Scholar 

  35. Devaney, R.L.: An introduction to chaotic dynamical systems. 2nd Ed. Addison-Wesley Publishing Company, New York (1989)

    MATH  Google Scholar 

  36. Dieci, L., Van Vleck., E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Num. Math. 17, 275–291 (1995)

    Article  MATH  Google Scholar 

  37. Dieci, L., Van Vleck, E.S.: Lyapunov spectral intervals: theory and computation. SIAM J. Numer. Anal. 40, 516–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dieci, L., Elia, C.: The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects. J. Diff. Eq. 230, 502–531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dieci, L., Lopez, L.: Smooth singular value decomposition on the symplectic group and Lyapunov exponents approximation. Calcolo 43, 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dieci, L., Russell, R.D., Van Vleck, E.S.: On the computation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34, 402–423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Donnay, V.: Geodesic flow on the two-sphere, Part I: Positive measure entropy. Erg. Theory Dyn. Syst. 8, 531–553 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Donnay, V.: Geodesic flow on the two-sphere, Part II: Ergodicity. Lect. Notes Math. 1342, 112–153 (1988)

    Article  MathSciNet  Google Scholar 

  43. Donnay, V., Liverani, C.: Potentials on the two-torus for which the Hamiltonian flow is ergodic. Commun. Math. Phys. 135, 267–302 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  45. Eckmann, J.-P., Oliffson Kamphorst, S., Ruelle, D., Ciliberto, S.: Liapunov exponents from time series. Phys. Rev. A 34, 4971–4979 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  46. Farmer, J.D.: Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4, 366–393 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Farmer, J.D., Ott, E., Yorke, J.A.: The dimension of chaotic attractors. Physica D 7, 153–180 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  48. Ford, J., Lunsford, G.H.: Stochastic behavior of resonant nearly linear oscillator systems in the limit of zero nonlinear coupling. Phys. Rev. A 1, 59–70 (1970)

    Article  ADS  Google Scholar 

  49. Fouchard, M., Lega, E., Froeschlé, Ch., Froeschlé, C.: On the relationship between the fast Lyapunov indicator and periodic orbits for continuous flows. Cel. Mech. Dyn. Astron. 83, 205–222 (2002)

    Article  ADS  MATH  Google Scholar 

  50. Freistetter, F.: Fractal dimensions as chaos indicators. Cel. Mech. Dyn. Astron. 78, 211–225 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Froeschlé, C.: Numerical study of dynamical systems with three degrees of freedom II. Numerical displays of four-dimensional sections. Astron. Astrophs. 5, 177–183 (1970)

    ADS  Google Scholar 

  52. Froeschlé, C.: Numerical study of a four-dimensional mapping. Astron. Astrophs. 16, 172–189 (1972)

    ADS  Google Scholar 

  53. Froeschlé, C.: The Lyapunov characteristic exponents—Applications to celestial mechanics. Cel. Mech. Dyn. Astron. 34, 95–115 (1984)

    MATH  Google Scholar 

  54. Froeschlé, C.: The Lyapunov characteristic exponents and applications. J. de Méc. Théor. et Appl. Numéro spécial 101–132 (1984)

    Google Scholar 

  55. Froeschlé, C.: The Lyapunov characteristic exponents and applications to the dimension of the invariant manifolds and chaotic attractors. In: Szebehely VG (ed.) Stability of the Solar System and Its Minor Natural and Artificial Bodies, 265–282, D. Reidel Publishing Company (1985)

    Google Scholar 

  56. Froeschlé, C., Lega, E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool. Cel. Mech. Dyn. Astron. 78, 167–195 (2000)

    Article  ADS  MATH  Google Scholar 

  57. Froeschlé, C., Froeschlé, Ch., Lohinger, E.: Generalized Lyapunov characteristic indicators and corresponding Kolmogorov like entropy of the standard mapping. Cel. Mech. Dyn. Astron. 56, 307–314 (1993)

    Article  ADS  MATH  Google Scholar 

  58. Froeschlé, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Cel. Mech. Dyn. Astron. 67, 41–62 (1997)

    Article  ADS  MATH  Google Scholar 

  59. Froeschlé, C., Gonczi, R., Lega, E.: The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space Sci. 45, 881–886 (1997)

    Article  ADS  Google Scholar 

  60. Frøyland, J.: Lyapunov exponents for multidimensional orbits. Phys. Let. A 97, 8–10 (1983)

    Article  ADS  Google Scholar 

  61. Frøyland, J., Alfsen, K.H.: Lyapunov-exponent spectra for the Lorenz model. Phys. Rev. A 29, 2928–2931 (1984)

    Article  ADS  Google Scholar 

  62. Geist, K., Parlitz, U., Lauterborn, W.: Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 83, 875–893 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Goldhirsch, I., Sulem, P.-L., Orszag, S.A.: Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica D 27, 311–337 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Gottwald, G.A., Melbourne. I.: A new test for chaos in deterministic systems. Proc. Roy. Soc. London A 460, 603–611 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Gottwald, G.A., Melbourne, I.: Testing for chaos in deterministic systems with noise. Physica D 212, 100–110 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. Greene, J.M., Kim, J.-S.: The calculation of Lyapunov spectra. Physica D 24, 213–225 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. Greub, W.: Multilinear Algebra. 2nd Ed. Springer, Berlin, Heidelberg, New York (1978)

    MATH  Google Scholar 

  69. Guzzo, M., Lega, E., Froeschlé, C.: On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems. Physica D 163, 1–25 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Haken, H.: At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point. Phys. Let. A 94, 71–72 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  71. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9, 413–435 (1999)

    Article  ADS  MATH  Google Scholar 

  72. Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  ADS  Google Scholar 

  73. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  74. Howard, J.E. : Discrete virial theorem. Cel. Mech. Dyn. Astron. 92, 219–241 (2005)

    Article  ADS  MATH  Google Scholar 

  75. Hubbard, J.H., Hubbard, B.B.: Vector Calculus, Linear Algebra and Differential Forms: A Unified Approach. Prentice Hall, New Jersey (1999)

    MATH  Google Scholar 

  76. Johnson, B.A., Palmer, K.J., Sell, G.R.: Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18, 1–33 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  77. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Let. A 185, 77–87 (1994)

    Article  ADS  Google Scholar 

  78. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  79. Kaplan, J.L., Yorke, J.A.: Chaotic behavior of multidimensional difference equations. In: Peitgen, H.-O., Walter, H.-O. (eds.): Functional Differential Equations and Approximations of Fixed Points, Lect. Notes Math. 730, 204–227 (1979)

    Google Scholar 

  80. Karanis, G.I., Vozikis, Ch.L.: Fast detection of chaotic behavior in galactic potentials. Astron. Nachr. 329, 403–412 (2008)

    Article  ADS  Google Scholar 

  81. Kotoulas, T., Voyatzis, G.: Comparative study of the 2:3 and 3:4 resonant motion with Neptune: An application of symplectic mappings and low frequency analysis. Cel. Mech. Dyn. Astron. 88, 343–163 (2004)

    Google Scholar 

  82. Kovács, B.: About the efficiency of Fast Lyapunov Indicator surfaces and Small Alignment Indicator surfaces. PADEU, 19, 221–236 (2007)

    ADS  Google Scholar 

  83. Laskar, J.: The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    Article  ADS  Google Scholar 

  84. Laskar, J.: Frequency analysis of multi-dimensional systems. Global dynamics and diffusion. Physica D 67, 257–281 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. Laskar, J.: Introduction to frequency map analysis. In: Simó, C. (ed.): Hamiltonian systems with three or more degrees of freedom, 134–150, Plenum Press, New York (1999)

    Google Scholar 

  86. Laskar, J., Froeschlé, C., Celletti, A.: The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard map. Physica D 56, 253–269 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. Ledrappier, F., Young, L.-S.: Dimension formula for random transformations. Commun. Math. Phys. 117, 529–548 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. Lega, E., Froeschlé, C.: Comparison of convergence towards invariant distributions for rotation angles, twist angles and local Lyapunov characteristic numbers. Planet. Space Sci. 46, 1525–1534 (1998)

    Article  ADS  Google Scholar 

  89. Lega, E., Froeschlé, C.: On the relationship between fast Lyapunov indicator and periodic orbits for symplectic mappings. Cel. Mech. Dyn. Astron. 81, 129–147 (2001)

    Article  ADS  MATH  Google Scholar 

  90. Li, C., Chen, G.: Estimating the Lyapunov exponents of discrete systems. Chaos 14, 343–346 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. Li, C., Xia, X.: On the bound of the Lyapunov exponents of continuous systems. Chaos 14, 557–561 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Second Edition. Springer, Berlin, Heidelberg, New York (1992)

    MATH  Google Scholar 

  93. Lohinger, E., Froeschlé, C., Dvorak R.: Generalized Lyapunov exponents indicators in Hamiltonian dynamics: an application to a double star system. Cel. Mech. Dyn. Astron. 56, 315–322 (1993)

    Article  ADS  MATH  Google Scholar 

  94. Lu, J., Yang, G., Oh, H., Luo, A.C.J.: Computing Lyapunov exponents of continuous dynamical systems: method of Lyapunov vectors. Chaos Sol. Fract. 23, 1879–1892 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  95. Lukes-Gerakopoulos, G., Voglis, N., Efthymiopoulos, C.: The production of Tsallis entropy in the limit of weak chaos and a new indicator of chaoticity. Physica A 387, 1907–1925 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  96. Lyapunov, A.M. (1992) The General Problem of the Stability of Motion. Taylor and Francis, London (English translation from the French: Liapounoff A (1907) Problème général de la stabilité du mouvement. Annal. Fac. Sci. Toulouse 9, 203–474. The French text was reprinted in Annals Math. Studies Vol. 17 Princeton Univ. Press (1947). The original was published in Russian by the Mathematical Society of Kharkov in 1892)

    Google Scholar 

  97. Markarian, R.: Non-uniformly hyperbolic billiards. Annal. Fac. Sci. Toulouse 3, 223–257 (1994)

    MathSciNet  MATH  Google Scholar 

  98. Mathiesen, J., Cvitanoviæ, P.: Lyapunov exponents. In: Cvitanoviæ, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G. (eds.): Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen, http://chaosbook.org/version12/ (2008)

  99. Nagashima, T., Shimada, I.: On the C-system-like property of the Lorenz system. Prog. Theor. Phys. 58, 1318–1320 (1977)

    Article  ADS  Google Scholar 

  100. Núñez, J.A., Cincotta, P.M., Wachlin, F.C.: Information entropy. An indicator of chaos. Cel. Mech. Dyn. Astron. 64, 43–53 (1996)

    Article  ADS  MATH  Google Scholar 

  101. Oliveira, S., Stewart, D.E.: Exponential splittings of products of matrices and accurately computing singular values of long products. Lin. Algebra Appl. 309, 175–190 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  102. Oseledec, V.I.: A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  103. Ott, E.: Strange attractors and chaotic motions of dynamical systems. Rev. Mod. Phys. 53, 655–671 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  104. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from time series. Phys. Rev. Let. 45, 712–716 (1980)

    Article  ADS  Google Scholar 

  105. Paleari, S., Penati, S.: Numerical Methods and Results in the FPU Problem. Lect. Notes Phys. 728, 239–282 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  106. Pesin, Ya. B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32, 55–114 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  107. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran. The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  108. Raghunathan, M.S.: A proof of Oseledec’s multiplicative ergodic theorem. Isr. J. Math. 32, 356–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  109. Ramasubramanian, K., Sriram, M.S.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139, 72–86 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. Rangarajan, G., Habib, S., Ryne, R.D.: Lyapunov exponents without rescaling and reorthogonalization. Phys. Rev. Let. 80, 3747–3750 (1998)

    Article  ADS  Google Scholar 

  111. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  112. Roux, J.-C., Simoyi, R.H., Swinney, H.L.: Observation of a strange attractor. Physica D 8, 257–266 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  113. Ruelle, D.: Analycity properties of the characteristic exponents of random matrix products. Adv. Math. 32, 68–80 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  114. Ruelle, D.: Ergodic theory of differentiable dynamical systems. IHES Publ. Math. 50, 275–306 (1979)

    Google Scholar 

  115. Sándor, Zs., Érdi, B., Efthymiopoulos, C.: The phase space structure around L4 in the restricted three-body problem. Cel. Mech. Dyn. Astron. 78, 113–123 (2000)

    Article  ADS  MATH  Google Scholar 

  116. Sándor Zs., Érdi, B., Széll, A., Funk, B.: The relative Lyapunov indicator: an efficient method of chaos detection. Cel. Mech. Dyn. Astron. 90, 127–138 (2004)

    Article  ADS  MATH  Google Scholar 

  117. Sandri, M.: Numerical calculation of Lyapunov exponents. Mathematica J. 6, 78–84 (1996)

    Google Scholar 

  118. Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Let. 55, 1082–1085 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  119. Shimada, I., Nagashima, T.: A numerical approach to ergodic problem of dissipative dynamical systems. Prog. Theor. Phys. 61, 1605–1615 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  120. Sideris, I.V.: Characterization of chaos: a new, fast and effective measure. In: Gottesman, S.T., Buchler, J.-R. (eds.): Nonlinear Dynamics in Astronomy and Astrophysics, Annals of the New York Academy of Science, 1045:79, The New York Academy of Sciences (2005)

    Google Scholar 

  121. Sideris, I.V.: Measure of orbital stickiness and chaos strength. Phys. Rev. E 73, 066217 (2006)

    Google Scholar 

  122. Skokos Ch.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A 34, 10029–10043 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  123. Skokos, Ch., Contopoulos, G., Polymilis, C.: Structures in the phase space of a four dimensional symplectic map. Cel. Mech. Dyn. Astron. 65, 223–251 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  124. Skokos, Ch., Antonopoulos, Ch., Bountis, T.C., Vrahatis, M.N.: How does the smaller alignment index (SALI) distinguish order from chaos? Prog. Theor. Phys. Supp. 150, 439–443 (2003)

    Article  ADS  Google Scholar 

  125. Skokos, Ch., Antonopoulos, Ch., Bountis, T.C., Vrahatis, M.N.: Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A 37, 6269–6284 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  126. Skokos, Ch., Bountis, T.C., Antonopoulos, Ch.: Geometrical properties of local dynamics in Hamiltonian systems: The generalized alignment index (GALI) method. Physica D 231, 30–54 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  127. Skokos, Ch., Bountis, T.C., Antonopoulos, Ch.: Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the generalized alignment index method. Eur. Phys. J. Sp. Top. 165, 5–14 (2008)

    Article  Google Scholar 

  128. Spivak, M.: Calculus on Manifolds. Addison-Wesley, New York (1965)

    MATH  Google Scholar 

  129. Spivak, M.: Comprehensive Introduction to Differential Geometry, vol. 1. Publish or Perish Inc., Houston (1999)

    Google Scholar 

  130. Stewart, D.E.: A new algorithm for the SVD of a long product of matrices and the stability of products. Electr. Trans. Numer. Anal. 5, 29–47 (1997)

    MATH  Google Scholar 

  131. Stoddard, S.D., Ford, J.: Numerical experiments on the stochastic behavior of a Lennard–Jones gas system. Phys. Rev. A 8, 1504–1512 (1973)

    Article  ADS  Google Scholar 

  132. Süli, Á.: Speed and efficiency of chaos detection methods. In: Süli, Á., Freistetter, F., Pál, A. (eds.): Proceedings of the 4th Austrian Hungarian workshop on Celestial Mechanics, 18, 179–189, Publications of the Astronomy Department of the Eötvös University (2006)

    Google Scholar 

  133. Süli, Á.: Motion indicators in the 2D standard map. PADEU 17, 47–62 (2006)

    ADS  Google Scholar 

  134. Takens, F.: Detecting strange attractors in turbulence. Lect. Notes Math. 898, 366–381 (1981)

    Article  MathSciNet  Google Scholar 

  135. Voglis, N., Contopoulos, G.: Invariant spectra of orbits in dynamical systems. J. Phys. A 27, 4899–4909 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  136. Voglis, N., Contopoulos, G., Efthymiopoulos, C.: Method for distinguishing between ordered and chaotic orbits in four-dimensional maps. Phys. Rev. E 57, 372–377 (1998)

    Article  ADS  Google Scholar 

  137. Voyatzis, G., Ichtiaroglou, S.: On the spectral analysis of trajectories in near-integrable Hamiltonian systems. J. Phys. A 25, 5931–5943 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  138. Vozikis, Ch.L., Varvoglis, H., Tsiganis, K.: The power spectrum of geodesic divergences as an early detector of chaotic motion. Astron. Astrophs. 359, 386–396 (2000)

    ADS  Google Scholar 

  139. Vrahatis, M.N., Bountis, T.C., Kollmann, M.: Periodic orbits and invariant surfaces of 4D nonlinear mappings. Int. J. Bif. Chaos 6, 1425–1437 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  140. Vrahatis, M.N., Isliker, H., Bountis, T.C.: Structure and breakdown of invariant tori in a 4-D mapping model of accelerator dynamics. Int. J. Bif. Chaos 7, 2707–2722 (1997)

    Article  MATH  Google Scholar 

  141. Walters, P.: A dynamical proof of the multiplicative ergodic theorem. Thans. Amer. Math. Soc. 335, 245–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  142. Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Erg. Theory Dyn. Syst. 5, 145–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  143. Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105, 391–414 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  144. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  145. Wu, X., Huang, T.-Y., Zhang, H.: Lyapunov indices with two nearby trajectories in a curved spacetime. Phys. Rev. E 74:083001 (2006)

    MathSciNet  Google Scholar 

  146. Young, L.-S.: Dimension, entropy and Lyapunov exponents. Erg. Theory Dyn. Syst. 2, 109–124 (1982)

    Article  MATH  Google Scholar 

  147. Zou, Y., Pazó, D., Romano, M.C., Thiel, M., Kurths, J.: Distinguishing quasiperiodic dynamics from chaos in short-time series. Phys. Rev. E 76:016210 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  148. Zou, Y., Thiel, M., Romano, M.C., Kurths, J.: Characterization of stickiness by means of recurrence. Chaos 17:043101 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Skokos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skokos, C. (2010). The Lyapunov Characteristic Exponents and Their Computation. In: Souchay, J., Dvorak, R. (eds) Dynamics of Small Solar System Bodies and Exoplanets. Lecture Notes in Physics, vol 790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04458-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04458-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04457-1

  • Online ISBN: 978-3-642-04458-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics