Skip to main content

Influencing Factors in Model-Based Testing with UML State Machines: Report on an Industrial Cooperation

  • Conference paper
Model Driven Engineering Languages and Systems (MODELS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5795))

Abstract

Automatic model-based test generation is influenced by many factors such as the test generation algorithm, the structure of the used test model, and the applied coverage criteria. In this paper, we report on an industrial cooperation for model-based testing: We used a UML state machine to generate test suites, the original system under test was not provided, and we conducted mutation analysis on artificial implementations. The focus of this report is on tuning the influencing factors of the test generation and showing their impact on the generated test suites. This report raises further questions, e.g. about the role of test model transformations for coverage criteria satisfaction.

Empirical results category paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Object Management Group: Unified Modeling Language (UML), version 2.1 (2007)

    Google Scholar 

  2. Fraser, G., Wotawa, F.: Ordering coverage goals in model checker based testing. In: ICSTW 2008: Proceedings of the 2008 IEEE ICST Workshop, vol. 0, pp. 31–40 (2008)

    Google Scholar 

  3. Weißleder, S.: ParTeG (Partition Test Generator), http://parteg.sourceforge.net

  4. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  5. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools. Addison-Wesley Longman Publishing Co., Inc. (1999)

    Google Scholar 

  6. Myers, G.J.: Art of Software Testing. John Wiley & Sons, Inc., New York (1979)

    MATH  Google Scholar 

  7. Broy, M., Jonsson, B., Katoen, J.P.: Model-Based Testing of Reactive Systems: Advanced Lectures. LNCS, vol. 3472. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco (2006)

    Google Scholar 

  9. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: France, R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 416–429. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Sokenou, D.: Generating Test Sequences from UML Sequence Diagrams and State Diagrams. In: INFORMATIK 2006, pp. 236–240 (2006)

    Google Scholar 

  11. Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for static checking and test generation. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 383–395. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Friske, M., Schlingloff, B.H.: Improving Test Coverage for UML State Machines Using Transition Instrumentation. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 301–314. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Weißleder, S., Schlingloff, B.H.: Deriving Input Partitions from UML Models for Automatic Test Generation. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 151–163. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Lämmel, R., Harm, J.: Test case characterisation by regular path expressions. In: Brinksma, E., Tretmans, J. (eds.) Proc. Formal Approaches to Testing of Software (FATES 2001). Notes Series NS-01-4, BRICS, pp. 109–124 (2001)

    Google Scholar 

  15. Briand, L.C., Labiche, Y., Lin, Q.: Improving statechart testing criteria using data flow information. In: ISSRE 2005, pp. 95–104 (2005)

    Google Scholar 

  16. Kosmatov, N., Legeard, B., Peureux, F., Utting, M.: Boundary Coverage Criteria for Test Generation from Formal Models. In: ISSRE 2004, pp. 139–150. IEEE, Los Alamitos (2004)

    Google Scholar 

  17. Weißleder, S., Schlingloff, B.-H.: Quality of Automatically Generated Test Cases based on OCL Expressions. In: ICST, pp. 517–520. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  18. Chilenski, J.J., Miller, S.P.: Applicability of Modified Condition/Decision Coverage to Software Testing. Software Engineering Journal (1994)

    Google Scholar 

  19. Ranville, S.: MCDC Test Vectors From Matlab Models – Automatically. In: Embedded Systems Conference, San Francisco, USA (2003)

    Google Scholar 

  20. Rajan, A., Whalen, M.W., Heimdahl, M.P.E.: The effect of program and model structure on mc/dc test adequacy coverage. In: ICSE 2008, pp. 161–170. ACM, New York (2008)

    Google Scholar 

  21. Weißleder, S.: Semantic-Preserving Test Model Transformations for Interchangeable Coverage Criteria. In: MBEES 2009: Model-Based Development of Embedded Systems (April 2009)

    Google Scholar 

  22. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental determination of sufficient mutant operators. ACM Transactions on Software Engineering and Methodology, 99–118 (1996)

    Google Scholar 

  23. Offutt, A.J., Lee, S.D.: An empirical evaluation of weak mutation. IEEE Transactions on Software Engineering 20(5), 337–344 (1994)

    Article  Google Scholar 

  24. Black, P.E., Okun, V., Yesha, Y.: Mutation Operators for Specifications. In: ASE 2000: Proceedings of the 15th IEEE international conference on Automated software engineering, Washington, DC, USA, p. 81. IEEE Computer Society, Los Alamitos (2000)

    Chapter  Google Scholar 

  25. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for testing experiments? In: ICSE 2005, pp. 402–411. ACM, New York (2005)

    Google Scholar 

  26. Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using Mutation Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE Transactions on Software Engineering 32, 608–624 (2006)

    Article  Google Scholar 

  27. Paradkar, A.: Case studies on fault detection effectiveness of model based test generation techniques. In: A-MOST 2005, pp. 1–7. ACM Press, New York (2005)

    Google Scholar 

  28. Chilenski, J.J.: MCDC Forms (Unique-Cause, Masking) versus Error Sensitivity, a white paper submitted to NASA Langley Research Center under contract NAS1-20341 (January 2001)

    Google Scholar 

  29. Certification Authorities Software Team: Position Paper-6: Rationale for Accepting Masking MC/DC in Certification Projects (2001)

    Google Scholar 

  30. Budnik, C.J., Subramanyan, R., Vieira, M.: Peer-to-peer comparison of model-based test tools. In: GI Jahrestagung (1). LNI, vol. 133, pp. 223–226. GI (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weißleder, S. (2009). Influencing Factors in Model-Based Testing with UML State Machines: Report on an Industrial Cooperation. In: Schürr, A., Selic, B. (eds) Model Driven Engineering Languages and Systems. MODELS 2009. Lecture Notes in Computer Science, vol 5795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04425-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04425-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04424-3

  • Online ISBN: 978-3-642-04425-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics