Skip to main content

Drosophila as a Model for Neurodegenerative Disease: Roles of RNA Pathways in Pathogenesis

  • Chapter
  • First Online:
Macro Roles for MicroRNAs in the Life and Death of Neurons

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 419 Accesses

Abstract

Human neurodegenerative diseases, including the polyglutamine diseases like Huntington's disease and Spinocerebellar ataxia type 3, are late-onset progressive neurodegenerative disorders for which few cures or treatments are available. To develop new approaches to the understanding of and foundation for therapeutics for these diseases, we are using Drosophila as a model. In these studies, we have expressed the human disease gene for the polyglutamine disorder Spinocerebellar ataxia type 3 in flies. Expression of a normal, non-mutant protein with a short polyglutamine stretch has no effect, but expression of a disease form of the protein with an expanded polyglutamine confers late-onset progressive neurodegeneration.

Our research has subsequently focused on modifier screens for genes that modulate the neurodegeneration. These genetic screens have confirmed our earlier findings that modulation of protein solubility and protein quality control pathways has a dramatic effect on polyglutamine protein toxicity. In our genetic screens, however, we also found evidence of a role for microRNAs in disease and a pathogenic role of the CAG repeat RNA in polyglutamine-induced degeneration. For the microRNA pathway, we found that the microRNA bantam is a dosage-sensitive modifier of polyglutamine toxicity and that compromise of the entire microRNA pathway is more severely deleterious. In other screens, we isolated the gene muscleblind as an upregulation enhancer of polyglutamine protein toxicity. This finding suggested to us that there might be a role for the CAG-expanded repeat RNA in polyglutamine degeneration because muscleblind is a known modulator of CUG-based RNA diseases. We further tested the role of the RNA in polyglutamine toxicity by altering the CAG repeat sequence to an interrupted CAA/CAG repeat within the polyglutamine-encoding region; this alteration mitigated toxicity. We further found that expression of an untranslated CAG repeat of pathogenic length confered neural dysfunction and degeneration. These studies indicate that a number of different RNA pathways modulate polyglutamine disease and neurodegeneration, including microRNA pathways and, for CAG repeat diseases, the RNA itself. This latter finding highlights common components between RNA-based and polyglutamine protein-based repeat expansion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865–868

    Article  CAS  PubMed  Google Scholar 

  • Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nature Rev Genet 6:9–23

    Article  CAS  PubMed  Google Scholar 

  • Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171

    Article  CAS  PubMed  Google Scholar 

  • Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 3:1950–1964

    Article  CAS  PubMed  Google Scholar 

  • Bilen J, Liu N, Bonini NM (2006a) A new role for microRNA pathways: modulation of degeneration induced by pathogenic human disease proteins. Cell Cycle 5:2835–2838

    CAS  Google Scholar 

  • Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM (2006b) MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 24:157–163

    Article  CAS  Google Scholar 

  • Bonini NM (2002) Chaperoning brain degeneration. Proc Natl Acad Sci USA 99 Suppl 4:16407–16411

    Article  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  CAS  PubMed  Google Scholar 

  • Burnett B, Li F, Pittman RN (2003) The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Human Mol Genet 12:3195–3205

    Article  CAS  Google Scholar 

  • Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ (2005) Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20:483–489

    Article  CAS  PubMed  Google Scholar 

  • Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits α-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280:14733-14740

    Article  CAS  PubMed  Google Scholar 

  • Hagerman PJ, Hagerman RJ (2004) The fragile-X premutation: a maturing perspective. Am J Human Genet 74:805–816

    Article  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Zarnescu DC, Zhang F, Pearson CE, Lucchesi JC, Moses K, Warren ST (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39:739–747

    Article  CAS  PubMed  Google Scholar 

  • Kuyumcu-Martinez NM, Wang GS, Cooper TA (2007) Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell 28:68–78

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21:3381–3394

    Article  CAS  PubMed  Google Scholar 

  • Ladd PD, Smith LE, Rabaia NA, Moore JM, Georges SA, Hansen RS, Hagerman RJ, Tassone F, Tapscott SJ, Filippova GN (2007) An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16:3174–3187

    Article  CAS  PubMed  Google Scholar 

  • Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson's disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  CAS  PubMed  Google Scholar 

  • Lessing D, Bonini NM (2009) Maintaining the brain: insight into human neurodegeneration from Drosophila mutants. Nature Rev Genet 10:359–370

    Article  CAS  PubMed  Google Scholar 

  • Li LB, Yu Z, Teng X, Bonini NM (2008) RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453:1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Marsh JL, Thompson LM (2006) Drosophila in the study of neurodegenerative disease. Neuron 52:169–178

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nature Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. Embo J 19:4439–4448

    Article  CAS  PubMed  Google Scholar 

  • Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LP (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genet 38:758–769

    Article  CAS  PubMed  Google Scholar 

  • Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  CAS  PubMed  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    Article  CAS  PubMed  Google Scholar 

  • Pearson CE, Nichol Edamura K, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nature Rev Genet 6:729–742

    Article  CAS  PubMed  Google Scholar 

  • Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277

    Article  CAS  PubMed  Google Scholar 

  • Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA (2008) A miRNA signature of prion induced neurodegeneration. PLoS ONE 3:e3652

    Article  PubMed  Google Scholar 

  • Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nature Cell Biol 6:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Sobczak K, de Mezer M, Michlewski G, Krol J, Krzyzosiak WJ (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 31:5469–5482

    Article  CAS  PubMed  Google Scholar 

  • Todi SV, Laco MN, Winborn BJ, Travis SM, Wen HM, Paulson HL (2007) Cellular turnover of the polyglutamine disease protein ataxin-3 is regulated by its catalytic activity. J Biol Chem 282:29348–29358

    Article  CAS  PubMed  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genet 23:425–428

    Article  CAS  PubMed  Google Scholar 

  • Wheeler TM, Thornton CA (2007) Myotonic dystrophy: RNA-mediated muscle disease. Curr Opin Neurol 20:572–576

    Article  CAS  PubMed  Google Scholar 

  • Williams AJ, Paulson HL (2008) Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 31:521–528

    Article  CAS  PubMed  Google Scholar 

  • Wu YR, Wang CK, Chen CM, Hsu Y, Lin SJ, Lin YY, Fung HC, Chang KH, Lee-Chen GJ (2004) Analysis of heat-shock protein 70 gene polymorphisms and the risk of Parkinson's disease. Human Genet 114:236–241

    Article  CAS  Google Scholar 

  • Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C, Montine TJ, Montine KS, Aebersold RH, Zhang J (2004) Analysis of α-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the Bonini laboratory is supported by the NINDS, the NIA and the Howard Hughes Medical Institute. NMB is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy M. Bonini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonini, N.M. (2010). Drosophila as a Model for Neurodegenerative Disease: Roles of RNA Pathways in Pathogenesis. In: De Strooper, B., Christen, Y. (eds) Macro Roles for MicroRNAs in the Life and Death of Neurons. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04298-0_9

Download citation

Publish with us

Policies and ethics