Skip to main content

Interactions between microRNAs and Transcription Factors in the Development and Function of the Nervous System

  • Chapter
  • First Online:
Macro Roles for MicroRNAs in the Life and Death of Neurons

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 426 Accesses

Abstract

The formation and maturation of the nervous system requires precise control over the magnitude and timing of gene expression. MicroRNAs have emerged as potent regulators of translation, with roles ranging from the initial establishment of connectivity to activity-dependent refinement of the synapse. Many of the microRNA targets identified in the nervous system are themselves transcription factors, adding an additional layer of complexity in gene expression. Moreover, microRNAs and transcription factors are often embedded in feedback loops that reinforce changes in gene expression. These interactions lie at the heart of many cell fate decisions during the development of the nervous system. In addition, translational control of transcription factor abundance plays a prominent role in the regulation of retrograde signaling at neuromuscular synapses of both C. elegans and Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9:403–414

    Article  CAS  PubMed  Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: Genomics biogenesis mechanism and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bicker S, Schratt G (2008) microRNAs: tiny regulators of synapse function in development and disease. J Cell Mol Med 12:1466–1476

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen S M (2005) Principles of microRNA-target recognition. PLoS Biol 3: e85

    Article  PubMed  Google Scholar 

  • Caygill EE, Johnston LA (2008) Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 18:943–950

    Article  CAS  PubMed  Google Scholar 

  • Cayirlioglu P, Kadow IG Zhan X, Okamura K, Suh GS, Gunning D, Lai EC, Zipursky SL (2004) Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 319:1256–60

    Article  Google Scholar 

  • Chang S, Johnston RJ, Frokjaer-Jensen C, Lockery S,Hobert O (2004) MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430:785–789

    Article  CAS  PubMed  Google Scholar 

  • Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell J T (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet 40:43–50

    Article  CAS  PubMed  Google Scholar 

  • Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427

    Article  CAS  PubMed  Google Scholar 

  • Davis GW, Bezprozvanny I (2001) Maintaining the stability of neural function: a homeostatic hypothesis. Ann Rev Physiol 63:847–869

    Article  CAS  Google Scholar 

  • Didiano D, Hobert O (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nature Struct Mol Biol 13:849–851

    Article  CAS  Google Scholar 

  • Dore LC, Amigo JD, dos Santos CO, Zhang Z, Gai X, Tobias JW, Yu D, Klein AM, Dorman C, Wu W Hardison RC, Paw BH, Weiss MJ (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA 105:3333–3338

    Article  CAS  PubMed  Google Scholar 

  • Elgar SJ, Han J, Taylor MV (2008) mef2 activity levels differentially affect gene expression during Drosophila muscle development. Proc Natl Acad Sci USA 105:918–923

    Article  CAS  PubMed  Google Scholar 

  • Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identification of C elegans microRNAs. Mol Cell 11:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Hobert O (2006) Architecture of a MicroRNA-controlled gene regulatory network that diversifies neuronal cell fates Cold Spring Harbor Symp Quant Biol 71:181–188

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Fambrough D, Atashi JR, Goodman CS, Crews ST (1995) The Drosophila abrupt gene encodes a BTB-zinc finger regulatory protein that controls the specificity of neuromuscular connections, Genes Dev 9:2936–48

    Article  CAS  PubMed  Google Scholar 

  • Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845–849

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Legendre M, Ritchie W, Lopez F, Gautheret D (2006) Differential repression of alternative transcripts: a screen for miRNA targets. PLoS Comput Biol 2:e43

    Article  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed Pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang F, Lee JA, Gao FB (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 20:2793–2805

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    Article  CAS  PubMed  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability PLoS Genetics 3:e215

    Article  PubMed  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  • Simon DJ, Madison JM, Conery AL, Thompson-Peer KL, Soskis M, Ruvkun GB, Kaplan JM, Kim JK (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133:903–915

    Article  CAS  PubMed  Google Scholar 

  • Sokol NS, Xu P, Jan YN, Ambros V (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis, Genes Dev 22:1591–1596

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  CAS  PubMed  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    Article  CAS  PubMed  Google Scholar 

  • Vo N, Klein ME Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Calado DP, Galler G, Thai T-H, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Professor Joshua Kaplan for critical reading of this manuscript and for his support during my time in his laboratory.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simon, D.J. (2010). Interactions between microRNAs and Transcription Factors in the Development and Function of the Nervous System. In: De Strooper, B., Christen, Y. (eds) Macro Roles for MicroRNAs in the Life and Death of Neurons. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04298-0_3

Download citation

Publish with us

Policies and ethics