Skip to main content

Nanoengineered Materials for Thermoelectric Energy Conversion

  • Chapter
  • First Online:
Thermal Nanosystems and Nanomaterials

Part of the book series: Topics in Applied Physics ((TAP,volume 118))

Abstract

In this chapter we review recent advances in nanoengineered materials for thermoelectric energy conversion. We start by a brief overview of the fundamental interactions between heat and electricity, i.e., thermoelectric effects. A key requirement to improve the energy conversion efficiency is to increase the Seebeck coefficient (S) and the electrical conductivity (σ ), while reducing the thermal conductivity (κ). Nanostructures make it possible to modify the fundamental trade-offs between the bulk material properties through the changes in the density of states and interface effects on the electron and phonon transport. We will review recent experimental and theoretical results on superlattice and quantum dot thermoelectrics, nanowires, thin-film microrefrigerators, and solid-state thermionic power generation devices. In the latter case, the latest experimental results for semimetal rare-earth nanoparticles in a III–V semiconductor matrix as well as nitride metal/semiconductor multilayers will be discussed. We will briefly describe recent developments in nonlinear thermoelectrics, as well as electrically pumped optical refrigeration and graded thermoelectric materials. It is important to note that, while the material thermoelectric figure of merit (Z = S2σ /κ ) is a key parameter to optimize, one has to consider the whole system in an energy conversion application, and system optimization sometimes places other constraints on the materials.We will also review challenges in the experimental characterization of thin film thermoelectric materials. Finally, we will assess the potential of some of the more exotic techniques such as thermotunneling and bipolar thermoelectric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vining, C.: An inconvenient truth about thermoelectrics, Nature Materials 8, 83–85 (2009)

    Article  ADS  Google Scholar 

  2. Van der Sluis, P.: Improvement in cooling stoves, Intl. Patent Pub. No. WO/2006/103613 (2006)

    Google Scholar 

  3. Amatya, R., and Ram, R.J.: Materials for Solar Thermoelectric Generators, Materials Research Society Spring Meeting, San Francisco, CA, Talk N1.7 (2009)

    Google Scholar 

  4. Goldsmid, H.J.: Thermoelectric Refrigeration, Plenum Press, New York (1964)

    Google Scholar 

  5. Shastry, S.B.: Electrothermal transport coefficients at finite frequencies, Rep. Prog. Phys. 72, 016501 (2009)

    Article  ADS  Google Scholar 

  6. Antokhin, A.Y., and Kozlov, VA.: Relationship between noise characteristics and efficiency of thermoelectric conversion, Soviet Phys. Semiconductors USSR 24, 926 (1990)

    Google Scholar 

  7. Rowe, D.M. (Ed.): Handbook of Thermoelectrics, CRC Press, Boca Raton (1995)

    Google Scholar 

  8. Humphrey, T.E., O’Dwyer, M.F., and Linke, H.: Power optimization in thermionic devices. J. Phys. D: Appl. Phys. 38, 2051–2054 (2005)

    Article  ADS  Google Scholar 

  9. Ioffe, A.F.: Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Limited, London (1957)

    Google Scholar 

  10. Tritt, T.M. (Ed.): Recent Trends in Thermoelectric Materials Research, In: Semiconductors and Semimetals, Vols. 69–71, Academic Press, San Diego (2001)

    Google Scholar 

  11. Slack, G.: In: CRC Handbook of Thermoelectrics, ed. by D.M. Rowe, CRC Press, LLC, Boca Raton (1995)

    Google Scholar 

  12. Poudel, B., Hao, Q., Ma, Y., Lan, YC., Minnich, A., Yu, B., Yan, X., Wang, D.Z., Muto, A., Vashaee, D., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  13. Heremans, J.P. , Jovovic, V., Toberer, E.S., Saramat, A. , Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science 321, 554 (2008)

    Article  ADS  Google Scholar 

  14. Hicks, L.D., and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B 47, 12727–12731 (1993)

    Article  ADS  Google Scholar 

  15. Dresselhaus, M.S., Lin, Y.M., Cronin, S.B., Rabin, O., Black, M.R., Dresselhaus, G., and Koga, T.: Quantum Wells and Quantum Wires for Potential Thermoelectric Applications. In: Semiconductors and Semimetals 71, 1–121 (2001)

    Article  Google Scholar 

  16. Shakouri, A., and Bowers J.E.: Heterostructure integrated thermionic coolers, Applied Physics Letters 71, 1234–1236 (1997)

    Article  ADS  Google Scholar 

  17. Mahan, G.D.: Thermionic Refrigeration. In: Semiconductor and Semimetals 71, 157–174 (2001)

    Article  ADS  Google Scholar 

  18. Venkatasubramanian, R.: Phonon Blocking Electron Transmitting Superlattice Structures as Advanced Thin Film Thermoelectric Materials. In: Semiconductors and Semimetals 71, 175–201 (2001)

    Article  Google Scholar 

  19. Chen, G.: Phonon Transport in Low-Dimensional Structures. In: Semiconductors and Semimetals 71, 203–259 (2001)

    Article  Google Scholar 

  20. Harman, T.C., Taylor, P.J., Spears, D.L., and Walsh, M.P.: Thermoelectric quantum-dot superlattices with high ZT, J. Electronic Materials 29, L1–L4 (2000)

    Article  ADS  Google Scholar 

  21. Dubios, L.: An introduction to the DARPA program in advanced thermoelectric materials and devices, Proc. Int. Conf. Thermoelectrics, ICT’99, 1–4 (1999)

    Google Scholar 

  22. Koh, Y.K., Vineis, C.J., Calawa, S.D., Walsh, M.P. and Cahill, D.G.: Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe, Appl. Phys. Lett. 94, 153101 (2009); Vineis, C.J., Harman, T.C., Calawa, S.D., Walsh, M.P., Reeder, R.E., Singh, R., and Shakouri, A.: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot, Phys. Rev. B 77, 235202 (2008)

    Google Scholar 

  23. Zhou, F., Szczech, J., Pettes, M.T., Moore, A.L., Jin, S., and Shi L.: Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations, Nano Lett. 7, 1649 (2007)

    Article  ADS  Google Scholar 

  24. Fardy, M., Hochbaum, A.I., Goldberger, J., Zhang, M.M. and Yang, P.D.: Synthesis and thermoelectrical characterization of lead chalcogenide nanowires, Adv. Mater. 19, 3047 (2007)

    Article  Google Scholar 

  25. Hochbaum, A.I., Chen, R.K., Delgado, R.D., Liang, W.J., Garnett, E.C, Najarian, M., Majumdar, A., and Yang, P.D.: Enhanced thermoelectric performance of rough silicon nanowires, Nature 451, 7175 (2008)

    Google Scholar 

  26. Shi, L., Yu, C.H., and Zhou, J.H.: Thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical systems, J. Phys. Chem. B 109, 22102 (2005)

    Article  Google Scholar 

  27. Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P.: Ultralow thermal conductivity in disordered, layered WSe2 crystals, Science 315, 351 (2007)

    Article  ADS  Google Scholar 

  28. Lundstrom M.: Fundamentals of Carrier Transport, Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  29. Vashaee, D., and Shakouri, A.: Electronic and thermoelectric transport in semiconductor and metallic superlattices, J. of Appl. Phys. 95, 1233 (2004)

    Article  ADS  Google Scholar 

  30. Meshkov, S.V.: Tunneling of electrons from a two-dimensional channel into bulk, Sov. Phys. JETP 64 (6), 1337 (1986)

    Google Scholar 

  31. Levine, B.F., Bethea, C.G., Hanian, G., Shen, V.O., Pelve, E., Abbott, R.R., and Hsieh, S.J.: Tunable long-wavelength detectors using graded barrier quantum wells grown by electron-beam source molecular-beam epitaxy, Appl. Phys. Lett. 56, 851 (1990)

    Article  ADS  Google Scholar 

  32. Vashaee, D., Zhang, Y., Shakouri, A., Zeng, GH., Chiu, Y.J.: Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime, Phys. Rev. B 74, 195315 (2006)

    Article  ADS  Google Scholar 

  33. Bian, Z., Zebarjadi, M., Singh, R., Ezzahri, Y., Shakouri, A., Zeng, G., Bahk, J.H., Bowers, J.E., Zide, J.M.O., Gossard, A.C.: Cross-plane Seebeck coefficient and Lorenz number in superlattices, Phys. Rev. B 76, 205311 (2007)

    Article  ADS  Google Scholar 

  34. Bian, Z.X., and Shakouri, A.: Enhanced solid-state thermionic emission in nonplanar heterostructures, Appl. Phys. Lett. 88, 012102 (2006)

    Article  ADS  Google Scholar 

  35. Zebarjadi, M., Shakouri, K., and Esfarjani, K.: Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique, Phys. Rev. B 74, 195331 (2006)

    Article  ADS  Google Scholar 

  36. Zebarjadi, M., Bulutay, C., Esfarjani, K., and Shakouri, A.: Monte Carlo simulation of electron transport in degenerate and inhomogeneous semiconductors, Appl. Phys. Lett. 90, 092111 (2007)

    Article  ADS  Google Scholar 

  37. Paulson, M., and Datta, S.: Thermoelectric effect in molecular electronics, Phys. Rev. B 67, 241403 (2003)

    Article  ADS  Google Scholar 

  38. Wang, S., and Mingo, N.: Tailoring interface roughness and superlattice period length in electron-filtering thermoelectric materials, Phys. Rev. B 79, 115316 (2009); Bulusu and Walker, D.G.: Quantum modeling of thermoelectric properties of Si/Ge/Si superlattices, IEEE Transactions on Electron Devices 55, 423–429 (2008)

    Google Scholar 

  39. Reddy, P., Jang, S.Y., Segalman, R.A., Majumdar, A.: Thermoelectricity in molecular junctions, Science 315, 1568 (2007)

    Article  ADS  Google Scholar 

  40. Balandin, A., and Wang, K.L.: Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, J. Applied Physics 84, 6149–6153 (1998)

    Article  ADS  Google Scholar 

  41. Walkauskas, S.G., Broido, D.A., Kempa, K., and Reinecke, T.L.: Lattice thermal conductivity of wires, J. Appl. Phys. 85, 2579 (1999)

    Article  ADS  Google Scholar 

  42. Chen, Y.F., Li, D.Y., Yang, J.K., Wu, Y.H., Lukes, J.R., and Majumdar, A.: Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires, Physica B Cond. Matt. 349, 270 (2004)

    Article  ADS  Google Scholar 

  43. Klitsner, T., VanCleve, J.E., Fisher, H.E., and Pohl, R.O.: Phonon radiative heat transfer and surface scattering, Phys. Rev. B 38, 7576–7594 (1988)

    Article  ADS  Google Scholar 

  44. Chen, Y.F., Li, D.Y., Lukes, J.R., and Majumdar, A.: Monte Carlo simulation of silicon nanowire thermal conductivity, J. Heat Trans. 127, 1129 (2005)

    Article  Google Scholar 

  45. Angelescu, D.E., Cross, M.C., and Roukes, M.L.: Heat transport in mesoscopic systems, Supperlattices and Microstructures 23, 673 (1998)

    Article  ADS  Google Scholar 

  46. Heikes, R.R., Ure, R.W.: Thermoelectricity: Science and Engineering, Interscience Publishers (1961)

    Google Scholar 

  47. Terasaki, I., Sasago, Y., and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B 56, R12685 (1997)

    Article  ADS  Google Scholar 

  48. Singh, D.J., and Kasinathan, D.: Thermoelectric properties of Na x CoO2 and prospects for other oxide thermoelectrics, J. Electronic Mat. 36, 736 (2007)

    Article  ADS  Google Scholar 

  49. Koshibae, W., Tsutsui, K., and Maekawa, S.: Thermopower in cobalt oxides, Phys. Rev. B 62, 6869 (2000)

    Article  ADS  Google Scholar 

  50. Peterson, M.R., Shastry, B.S., and Haerter, J.O.: Thermoelectric effects in a strongly correlated model for Na x CoO2, Phys. Rev. B 76, 165118 (2007)

    Article  ADS  Google Scholar 

  51. Ohta H., Sugiura, K., Koumoto K.: Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3, Inorganic Chemistry 47, 8429–8436 (2008)

    Article  Google Scholar 

  52. Scullin, M.L., Yu, C., Huijben, M., Mukerjee, S., Seidel, J., Zhan, Q., Moore, J., Majumdar, A., and Ramesh, R.: Anomalously large measured thermoelectric power factor in Sr1 − x La x TiO3 thin films due to SrTiO3 substrate reduction, Appl. Phys. Lett. 92, 202113 (2008)

    Article  ADS  Google Scholar 

  53. Shakouri, A., Labounty, C., Abraham, P., Piprek, J., and Bowers, J.E.: Enhanced thermionic emission cooling in high barrier superlattice heterostructures, Materials Research Society Symposium Proceedings 545, 449–458 (1998)

    Google Scholar 

  54. Vashaee, D., Shakouri, A.: Conservation of lateral momentum in heterostructure integrated thermionic coolers. Thermoelectric Materials – Research and Applications. Symposium (Materials Research Society Symposium Proceedings Vol. 691). Mater. Res. Soc. pp. 131–145, Warrendale, PA, USA (2001)

    Google Scholar 

  55. Shakouri, A.: Nanoscale devices for solid state refrigeration and power generation. Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, IEEE pp. 1–9, Piscataway, NJ, USA (2004)

    Google Scholar 

  56. Shakouri, A.: Thermoelectric, thermionic and thermophotovoltaic energy conversion, International Conference on Thermoelectrics, Clemson, NC, pp. 492–497 (2005)

    Google Scholar 

  57. Sun, X., Cronin, S.B., Liu, J.L., Wang, K.L., Koga, T., Dresselhaus, M.S., and Chen, G.: Experimental study of the effect of the quantum well structures on the thermoelectric figure of merit in Si/Si x Ge1 − x system, Proceedings of Int. Conf. Thermoelectrics, ICT’99, pp. 652–655 (1999)

    Google Scholar 

  58. Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B 53 (16), R10493–R10496 (1996)

    Article  ADS  Google Scholar 

  59. Kim, R., Datta, S., and Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance, J. of Appl. Phys. 105, 034506 (2009)

    Article  ADS  Google Scholar 

  60. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413, 597–602 (2001)

    Article  ADS  Google Scholar 

  61. Harman, T.C., Taylor, P.J., Walsh, M.P., and LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices, Science 297, 2229–2232 (2002)

    Article  ADS  Google Scholar 

  62. Hsu, K.F., Loo, S., Guo, F., Chen, F., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G.: Cubic AgPb m SbTe2 + m : Bulk thermoelectric materials with high figure of merit, Science 303 (5659), 818–821 (2004)

    Article  ADS  Google Scholar 

  63. Broido, D.A. and Reinecke, T.L.: Effect of superlattice structure on the thermoelectric figure of merit, Physical Review B 51, 13797–13800 (1995)

    Article  ADS  Google Scholar 

  64. Sofo, J.O., and Mahan, G.D.: Thermoelectric figure of merit of superlattices, Applied Physics Letters 65, 2690–2692 (1994)

    Article  ADS  Google Scholar 

  65. Chen, G., and Shakouri, A.: Heat transfer in nanostructures for solid-state energy conversion, Journal of Heat Transfer, Transactions of the ASME 124 (2), 242–252 (2002)

    Article  Google Scholar 

  66. Broido, D.A., and Reinecke, T.L.: Theory of thermoelectric power factor in quantum well and quantum wire superlattices, Phys. Rev. B 64, 045324 (2001)

    Article  ADS  Google Scholar 

  67. Dresselhaus, M.S., Lin, Y.M., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., Koga, T., Ying, J.Y.: Advances in 1D and 2D thermoelectric materials. Eighteenth International Conference on Thermoelectrics. Proceedings, (Cat. No.99TH8407). IEEE, pp. 92–99 (1999); Lin, Y.M., and Dresselhaus, M.S.: Thermoelectric properties of superlattice nanowires, Phys. Rev. B 68, 075304 (2003)

    Google Scholar 

  68. Zou, J., and Balandin, A.: Phonon heat conduction in a semiconductor nanowire, Journal of Applied Physics 89 (5), 2932–2938 (2001)

    Article  ADS  Google Scholar 

  69. Heremans, J.P., Thrush, C.M., Morelli, D.T., Wu, M.-C.: Resistance, magnetoresistance, and thermopower of zinc nanowire composites, Physical Review Letters 91 (7), 076804/1–4, 15 (2003)

    Google Scholar 

  70. Deyu, L., Prieto, A.L., Yiying, W., Martin-Gonzalez, M.S., Stacy, A., Sands, T., Gronsky, R., Peidong, Y., Majumdar, A.: Measurements of Bi2Te3 nanowire thermal conductivity and Seebeck coefficient, 21st International Conference on Thermoelectrics Proceedings (Cat. No.02TH8657), IEEE, pp. 333–336 (2002)

    Google Scholar 

  71. Sander, M.S., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M.: Control and assessment of structure and composition in bismuth telluride nanowire arrays. Synthesis, Functional Properties and Applications of Nanostructures. Symposium, Materials Research Society Symposium Proceedings 676, pp. Y8.35.1–5 (2002)

    Google Scholar 

  72. Zhang, Z.B., Dresselhaus, M.S., Ying, J.Y.: Fabrication, characterization and electronic properties of bismuth nanowire systems. Thermoelectric Materials – Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications. Symposium. Mater. Res. Soc. pp. 351–356 (1999)

    Google Scholar 

  73. Rabin, O., Herz, P.R., Lin, Y.M., Cronin, S.B., Akinwande, A.I., Dresselhaus, M.S.: Arrays of nanowires on silicon wafers. 21st International Conference on Thermoelectrics Proceedings (Cat. No.02TH8657), IEEE, pp. 276–279 (2002)

    Google Scholar 

  74. Mingo, N.: Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires, Appl. Phys. Lett. 84, 2652 (2004)

    Article  ADS  Google Scholar 

  75. Sharp, J., Thompson, A., Trahey, L., Stacy, A.: Measurement of thermoelectric nanowire array properties. 24th International Conference on Thermoelectrics Proceedings (Cat. No. 05TH8854C) IEEE., pp. 83–86 (2005)

    Google Scholar 

  76. Mahan, G.D., and Sofo, J.O.: The best thermoelectric, Proc. National Academy of Sciences of the United States of America 93, 7436–7439 (1996)

    Article  ADS  Google Scholar 

  77. Cai, J.W., and Mahan, G.D.: Transport properties of quantum dot arrays, Phys. Rev. B 78, 035115

    Google Scholar 

  78. Hatsopoulos, G.N., and Kaye, J.: Measured thermal efficiencies of a diode configuration of a thermo electron engine, J. Appl. Phys. 29, 1124–1125 (1958)

    Article  ADS  Google Scholar 

  79. Mahan G.D.: Thermionic refrigeration, J. Appl. Phys. 76, 4362 (1994)

    Article  ADS  Google Scholar 

  80. Mahan, G.D., Woods, L.M.: Multilayer thermionic refrigeration, Physical Review Letters 80 (18), 4016–4019 (1998)

    Article  ADS  Google Scholar 

  81. Hishinuma, Y., Moyzhes, B.Y., Geballe, T.H., Kenny, T.W.: Vacuum thermionic refrigeration with a semiconductor heterojunction structure, Applied Physics Letters 81, No. 22, 4242–4244 (2002)

    Google Scholar 

  82. Hishinuma Y., Geballe, T.H., Moyzhes, B.Y., and Kenny, T.W.: Measurements of cooling by room-temperature thermionic emission across a nanometer gap, J. Appl. Phys. 94, 4690 (2003)

    Article  ADS  Google Scholar 

  83. Gerstenmaier, Y.C., and Wachutka, G.: Efficiency of thermionic and thermoelectric converters. Thermophotovoltaic Generation of Electricity: TPV7, AIP Conference Proceeding 890, 349 (2007)

    ADS  Google Scholar 

  84. Tsu, R., Greene, R.F.: Inverse Nottingham effect cooling in semiconductors. Electrochemical & Solid-State Letters 2 (12), 645–647 (1999)

    Article  Google Scholar 

  85. Korotkov, A.N., Likharev, K.K.: Possible cooling by resonant Fowler–Nordheim emission, Applied Physics Letters 75 (16), 2491–2493 (1999)

    Article  ADS  Google Scholar 

  86. Semet, V., Binh, V.T., and Tsu, R.: Shaping electron field emission by ultrathin multilayered structure cathodes, Microelectronics J. 39, 607–616 (2008)

    Article  Google Scholar 

  87. Fisher, T.S., Walker, D.G.: Thermal and electrical energy transport and conversion in nanoscale electron field emission processes, Journal of Heat Transfer, Transactions of the ASME 124 (5), 954–962 (2002)

    Article  Google Scholar 

  88. Fisher, T.S., Walker, D.G., Weller, R.A.: Analysis and simulation of anode heating due to electron field emission, IEEE Transactions on Components & Packaging Technologies 26 (2) 317–323 (2003); Walker, D.G., Harris, C.T., Fisher, T.S., Davidson, J.L.: Estimation of parameters in thermal-field emission from diamond, Diamond and Related Materials 14 (1), 113–120 (2005)

    Google Scholar 

  89. Tzeng, Y., Chen, Y., Liu, C.: Fabrication and characterization of non-planar high-current-density carbon-nanotube coated cold cathodes, Diamond and Related Materials 12 (3–7), 442–445 (2003)

    Article  Google Scholar 

  90. Thong, J.T.L., Oon, C.H., Eng, W.K., Zhang, W.D., and Gan, L.M.: High-current field emission from a vertically aligned carbon nanotube field emitter array, Applied Physics Letters 79 (17), 2811–2813 (2001)

    Article  ADS  Google Scholar 

  91. Kock, F.A.M., Garguilo, J.M., Brown, B., Nemanich, R.J.: Enhanced low-temperature thermionic field emission from surface-treated N-doped diamond films, Diamond and Related Materials 11 (3–6), 774–779 (2002)

    Article  Google Scholar 

  92. Kock, F.A.M., Garguilo, J.M., Wang, Y., Shields, B., and Nemanich, R.J.: Vacuum thermionic emission and energy conversion from nanostructured carbon materials. Materials Research Society Fall Meeting, Symposium S, Boston MA (2003)

    Google Scholar 

  93. Koeck, F.A.M., Nemanich, R.J.: Sulfur-doped nanocrystalline diamond films as field enhancement based thermionic emitters and their role in energy conversion, Diamond and Related Materials 14 (11–12), 2051–2054 (2005); Koeck F.A.M., Nemanich, R.J.: Emission characterization from nitrogen-doped diamond with respect to energy conversion, Diamond and Related Materials 15 (2–3), 217–220 (2006)

    Google Scholar 

  94. Moyzhes, B.: Possible ways for efficiency improvement of thermoelectric materials, Fifteenth International Conference on Thermoelectrics, Pasadena, p. 183 (1996)

    Google Scholar 

  95. Rowe, D.M., and Min, G.: Multiple potential barriers as a possible mechanism to increase the Seebeck coefficient and electrical power factor, Thirteenth International Conference on Thermoelectrics, Kansas City, pp. 339–342 (1994)

    Google Scholar 

  96. Whitlow, L.W., and Hirano, T.: Superlattice applications to thermoelectricity, J. Appl. Phys. 78, 5460 (1995)

    Article  ADS  Google Scholar 

  97. Moyzhes, B.Y., and Nemchinsky, V.A.: Report on the XI International Conference on Thermoelectrics, IEEE, Arlington, TX, pp. 232–235 (1992)

    Google Scholar 

  98. Shakouri, A., Lee, E.Y., Smith, D.L., Narayanamurti, V., and Bowers, J.E.: Thermoelectric effects in submicron heterostructure barriers, Microscale Thermophysical Eng. 2, 37–42 (1998)

    Article  Google Scholar 

  99. Fan, X.F., Zeng, G.H., LaBounty, C., Bowers, J.E., Croke, E., Ahn, C.C., Huxtable, S., Majumdar, A., and Shakouri, A.: SiGeC/Si superlattice microcoolers, Applied Physics Letters 78, 1580–1582 (2001)

    Article  ADS  Google Scholar 

  100. LaBounty, C., Shakouri, A., Abraham, P., Bowers, J.E.: Monolithic integration of thin-film coolers with optoelectronic devices, Optical Engineering 39, 2847–2852 (2000)

    Article  ADS  Google Scholar 

  101. Shakouri, A., LaBounty C., Piprek, J., Abraham, P., Bowers, J.E.: Thermionic emission cooling in single barrier heterostructures, Applied Physics Letters 74 (1), 88–89 (1999)

    Article  ADS  Google Scholar 

  102. LaBounty, C., Shakouri, A., Bowers, J.E.: Design and characterization of thin film microcoolers, Journal of Applied Physics 89 (7), 4059–4064 (2001)

    Article  ADS  Google Scholar 

  103. Zhang, Y., ,Zeng, G.H., Piprek, J., Bar-Cohen, A., Shakouri, A.: Superlattice microrefrigerators fusion bonded with optoelectronic devices, IEEE Transactions on Components and Packaging Technologies 28 (4), 658–666 (2005)

    Article  Google Scholar 

  104. Zebarjadi, M., Esfarjani, K., and Shakouri, A.: Nonlinear Peltier effect in semiconductors, Appl. Phys. Lett. 91, 122104 (2007)

    Article  ADS  Google Scholar 

  105. Radtke, R.J., Ehrenreich, H., and Grein, C.H.: Multilayer thermoelectric refrigeration in Hg1 − x Cd x Te superlattices, J. Applied Physics 86, 3195 (1999)

    Article  ADS  Google Scholar 

  106. Ulrich, M.D., Barnes, P.A., and Vining, C.B.: Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration, Journal of Applied Physics 90 (3), 1625–1631 (2001)

    Article  ADS  Google Scholar 

  107. Mahan, G.D., and Vining, C.B.: The B factor in multilayer thermionic refrigeration, J. Appl. Phys. 86, 6852 (1999)

    Article  ADS  Google Scholar 

  108. Nolas, G.S., Sharp, J.W., and Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Material Developments, Springer-Verlag (2001)

    Google Scholar 

  109. Vashaee, D., and Shakouri, A.: Improved thermoelectric power factor in metal-based superlattices, Physical Review Letters 92 (10), 106103–1

    Google Scholar 

  110. Shakouri, A., and LaBounty, C.: Material optimization for heterostructure integrated thermionic coolers. Eighteenth International Conference on Thermoelectrics. Proceedings, ICT’99 (Cat. No. 99TH8407), IEEE. pp. 35–9. Piscataway, NJ, USA (1999)

    Google Scholar 

  111. O’Dwyer, M.F., Humphrey, T.E., Lewis, R.A., and Zhang, C.: The effect of the electron energy spectrum on electronic efficiency and power in thermionic and thermoelectric devices, 24th International Conference on Thermoelectrics, Clemson, South Carolina, USA (2005)

    Google Scholar 

  112. Humphrey, T.E., and O’Dwyer, M.F.: A comparison between solid-state thermionics and thermoelectrics, Journal of Applied Physics 98, 026108 (2005)

    Article  ADS  Google Scholar 

  113. Bian, Z., Shakouri, A.: Monte Carlo simulation of solid-state thermionic energy conversion devices based on non-planar heterostructure interfaces, 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors (HCIS-14) Chicago, July 24–29 (2005)

    Google Scholar 

  114. Zide, J.M., Klenov, D.O., Stemmer, S., Gossard, A.C., Zeng, G., Bowers, J.E., Vashaee, D., and Shakouri, A.: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles, Applied Physics Letters 87 (11), 112102 (2005)

    Article  ADS  Google Scholar 

  115. Humphrey, T.E., O’Dwyer, M.F., Zhang, C., and Lewis, R.A.: Solid-state thermionics and thermoelectrics in the ballistic transport regime, J. Appl. Phys. 89 (2), 026108 (2005)

    Article  ADS  Google Scholar 

  116. Mingo, N., Stewart, D.A., Broido, D.A., Srivastava, D.: Phonon transmission through defects in carbon nanotubes from first principles, Phys. Rev. B. 77, 033418 (2008)

    Article  ADS  Google Scholar 

  117. Humphrey, T.E., Linke, H.: Reversible thermoelectric nanomaterials, Physical Review Letters 94 (9), 0966011–4 (2005)

    Article  Google Scholar 

  118. Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M., and Ehrlich, A.C.: The effect of rare-earth filling on the lattice thermal conductivity of skutterudites, J. Applied Physics 79, 4002–4008 (1996)

    Article  ADS  Google Scholar 

  119. Casimir, H.B.G.: Note on the conduction of heat in crystals, Physica 5, 495–500 (1938)

    Article  ADS  Google Scholar 

  120. Venkatasubramanian, R.: Thin-film superlattice and quantum-well structures: A new approach to high-performance thermoelectric materials, Naval Res. Rev. 58, 44–54 (1996)

    Google Scholar 

  121. Yao, T.: Thermal properties of AlAs/GaAs superlattices, Applied Physics Letters 51, 1798–1800 (1987)

    Article  ADS  Google Scholar 

  122. Chen, G., Tien, C.L., Wu, X., and Smith, J.S.: Measurement of thermal diffusivity of GaAs/AlGaAs thin-film structures, J. Heat Transfer 116, 325–331 (1994)

    Article  Google Scholar 

  123. Tien, C.L., and Chen, G.: Challenges in microscale conductive and radiative heat transfer, Proc. Am. Soc. Mech. Eng., ASME HTD 227, 1–12 (1992); also in J. Heat Transfer 116, 799–807 (1994)

    Google Scholar 

  124. Yu, X.Y., Chen, G., Verma, A., and Smith, J.S.: Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure, Applied Physics Letters 67, 3554–3556 (1995); ibid. 68, 1303 (1996)

    Article  ADS  Google Scholar 

  125. Capsinski, W.S., and Maris, H.J.: Thermal conductivity of GaAs/AlAs superlattices, Physica B 220, 699–701 (1996)

    Article  ADS  Google Scholar 

  126. Lee, S.M., Cahill, D.G., and Venkatasubramanian, R.: Thermal conductivity of Si–Ge superlattices, Applied Physics Letters 70, 2957–2959 (1997)

    Article  ADS  Google Scholar 

  127. Yamasaki, I., Yamanaka, R., Mikami, M., Sonobe, H., Mori, Y., and Sasaki, T.: Thermoelectric properties of Bi2Te3/Sb2Te3 superlattice structures, Proc. Int. Conf. Thermoelectrics, ICT’98, pp. 210–213 (1998)

    Google Scholar 

  128. Capinski, W.S., Maris, H.J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D.S.: Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique, Physical Review B 59, 8105–8113 (1999)

    Article  ADS  Google Scholar 

  129. Borca-Tasciuc, T., Liu, W.L., Zeng, T., Song, D.W., Moore, C.D., Chen, G., Wang, K.L., Goorsky, M.S., Radetic, T., Gronsky, R., Koga, T., and Dresselhaus, M.S.: Thermal conductivity of symmetrically strained Si/Ge superlattices, Superlattices and Microstructures 28, 119–206 (2000)

    Article  Google Scholar 

  130. Song, D.W., Liu, W.L., Zeng, T., Borca-Tasciuc, T., Chen, G., Caylor, C., and Sands, T.D.: Thermal conductivity of skutterudite thin films and superlattices, Applied Physics Letters 77, 3854–3856 (2000)

    Article  ADS  Google Scholar 

  131. Venkatasubramanian, R.: Lattice thermal conductivity reduction and phonon localization-like behavior in superlattice structures, Physical Review B 61, 3091–3097 (2000)

    Article  ADS  Google Scholar 

  132. Huxtable, S.T., Shakouri, A., LaBounty, C., Fan, X., Abraham, P., Chiu, Y.J., Bowers, and Majumdar, A.: Thermal conductivity of indium phosphide-based superlattices, Microscale Thermophysical Engineering 4, 197–203 (2000)

    Article  Google Scholar 

  133. Borca-Tasciuc, T., Achimov, D., Liu, W.L., Chen, G., Ren, H.-W., Lin, C.-H., and Pei, S.S.: Thermal conductivity of InAs/AlSb superlattices, Microscale Thermophysical Engineering 5, 225–231 (2001)

    Article  Google Scholar 

  134. Liu, W.L., Borca-Tasciuc, T., Chen, G., Liu, J.L., and Wang, K.L.: Anisotropy thermal conductivity of Ge quantum dot and symmetrically strained Si/Ge superlattices, J. Nanoscience and Nanotechnology 1, 39–42 (2001)

    Article  Google Scholar 

  135. Narayanamurti, V., Stormer, J.L., Chin, M.A., Gossard, A.C., and Wiegmann: Selective transmission of high-frequency phonons by a superlattice: The ‘dielectric’ phonon filter, Physical Review Letters 43, 2012–2015 (1979)

    Article  ADS  Google Scholar 

  136. Ren, S.Y., and Dow, J.: Thermal conductivity of superlattices, Physical Review B 25, 3750–3755 (1982)

    Article  ADS  Google Scholar 

  137. Chen, G.: Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures, J. Heat Transfer 119, 220–229 (1997); see also Proc. Nat. Heat Transf. Conf., ASME HTD 323, 121 (1996)

    Article  Google Scholar 

  138. Hyldgaard, P., and Mahan, G.D.: Phonon Knudson flow in superlattices, Thermal Conductivity 23, 172–181, Technomic, Lancaster (1996)

    Google Scholar 

  139. Chen, G., and Neagu, M.: Thermal conductivity and heat transfer in superlattices, Applied Physics Letters 71, 2761–2763 (1997)

    Article  ADS  Google Scholar 

  140. Chen, G.: Thermal conductivity and ballistic phonon transport in cross-plane direction of superlattices, Physical Review B 57, 14958–14973 (1998); see also Proc. Int. Mech. Eng. Congr., DSC 59, 13 (1996)

    Article  ADS  Google Scholar 

  141. Hyldgaard, P. and Mahan, G.D.: Phonon superlattice transport, Physical Review B 56, 10754–10757 (1997)

    Article  ADS  Google Scholar 

  142. Tamura, S., Tanaka, Y., and Maris, H.J.: Phonon group velocity and thermal conduction in superlattices, Physical Review B 60, 2627–2630 (1999)

    Article  ADS  Google Scholar 

  143. Bies, W.E., Radtke, R.J., Ehrenreich, H.: Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices, J. Applied Physics 88, 1498–1503 (2000)

    Article  ADS  Google Scholar 

  144. Kiselev, A.A., Kim, K.W., Stroscio, M.A.: Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell, Physical Review B 62, 6896–6899 (2000)

    Article  ADS  Google Scholar 

  145. Yang, B., and Chen, G.: Lattice dynamics study of anisotropic heat conduction in superlattices, Microscale Thermophysical Engineering 5 (2) 107–116 (10)(2001)

    Google Scholar 

  146. Volz, S.G., Saulnier, J.B., Chen, G., and Beauchamp, P.: Computation of thermal conductivity of Si/Ge superlattices by molecular dynanmics techniques, Microelectronics J. 31, 815–819 (2000)

    Article  Google Scholar 

  147. Liang, X.G. and Shi, B.: Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices with Lennard-Jones potential, Materials Science and Engineering 292, 198–202 (2000)

    Article  Google Scholar 

  148. Chen, G.: Phonon wave heat conduction in thin films and superlattices, J. Heat Transfer 121, 945–953 (1999)

    Article  Google Scholar 

  149. Ju, Y.S., and Goodson, K.E.: Phonon scattering in silicon films with thickness of order 100 nm, Applied Physics Letters 74, 3005–3007 (1999)

    Article  ADS  Google Scholar 

  150. Ziman, J.M.: Electrons and Phonons, Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  151. Venkatasubramian, R., Siivola, E., and Colpitts, T.S.: In-plane thermoelectric properties of freestanding Si/Ge superlattice structures, Proc. Int. Conf. Thermoelectrics, ICT’98, pp. 191–197 (1998)

    Google Scholar 

  152. Simkin, M.V., and Mahan, G.D.: Minimum thermal conductivity of superlattices, Physical Review Letters 84, 927–930 (2000)

    Article  ADS  Google Scholar 

  153. Arutyunyan, L.I., Bogomolov, V.N., Kartenko, N.F., Kurdyukov, D.A., Popov, V.V., Prokof’ev, A.V., Smirnov, I.A., and Sharenkova, N.V.: Thermal conductivity of a new type of regular-structure nanocomposites: PbSe in opal pores, Physics of the Solid State 39, 510–514 (1997)

    Article  ADS  Google Scholar 

  154. Song, D.W., Shen, W.-N., Zeng, T., Liu, W.L., Chen, G., Dunn, B., Moore, C.D., Goorsky, M.S., Radetic, R., and Gronsky, R.: Thermal conductivity of nanoporous bismuth thin films for thermoelectric applications, ASME HTD 364-1, 339–344 (1999)

    Google Scholar 

  155. Volz, S.G., and Chen, G.: Molecular dynamics simulation of thermal conductivity of Si nanowires, Applied Physics Letters 75, 2056-2058 (1999)

    Article  ADS  Google Scholar 

  156. Walkauskas, S.G., Broido, D.A., Kempa, K., and Reinecke, T.L.: Lattice thermal conductivity of wires, J. Applied Physics 85, 2579–2582 (1999)

    Article  ADS  Google Scholar 

  157. Shi, L., Li, D.Y., Yu, C.H., Jang, W.Y., Kim, D., Yao, Z., Kim, P., Majumdar, A.: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device, J. of Heat Transfer, Transactions of the ASME 125 (5), 881–888 (2003)

    Article  Google Scholar 

  158. Zhou, F., Seol, J.H., Moore, A.L., Shi, L., Ye, Q., Scheffler, R.: One-dimensional electron transport and thermopower in an individual InSb nanowire, J. Phys.: Condens. Matter 18, 9651–9657 (2006)

    Article  ADS  Google Scholar 

  159. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., et al.: Silicon nanowires as efficient thermoelectric materials, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  160. Shi, L.: The role of defects on thermal and thermoelectric Transport in nanowires, MRS Spring Meeting, San Francisco (2009)

    Google Scholar 

  161. Savic, I., Mingo, N., and Stewart, D.A.: Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: Is localization observable? Phys. Rev. Lett. 101, 165502 (2008); For a different explanation of the possible low thermal conductivity see: Martin, P., Aksamija, Z., Pop, E., et al.: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires, Phys. Rev. Lett. 102, 125503 (2009)

    Google Scholar 

  162. Shakouri, A.: Nanoscale thermal transport and microrefrigerators on a chip, Proc. of IEEE 94, no. 8, 1613–1638 (2006)

    Article  Google Scholar 

  163. Singh, R., Vashaee, D., Zhang, Y., Negassi, M., Shakouri, A., Okuno, Y., Zeng, G., LaBounty, C., and Bowers, J.E.: Experimental characterization and modeling of InP-based microcoolers, Materials Research Society Fall Meeting, S11.4, Boston, MA (2003)

    Google Scholar 

  164. LaBounty, C.J., Shakouri, A., Robinson, G., Esparza, L., Abraham, P., and Bowers, J.E.: Experimental investigation of thin film InGaAsP coolers. Thermoelectric Materials. The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, Materials Research Society Symposium Proceedings 626, Z14.4.1–6 (2001)

    Google Scholar 

  165. Zhang, Y., Vashaee, D., Singh, R., Shakouri, A., Zeng, G. and Chiu, Y.-J.: Influence of doping concentration and ambient temperature on the cross-plane Seebeck coefficient of InGaAs/InAlAs superlattices. Thermoelectric Materials 2003. Research and Applications Symposium, Materials Research Society Symposium Proceedings 793, 59–65 (2004)

    Google Scholar 

  166. LaBounty, C., Almuneau, G., Shakouri, A., Bowers, J.E.: Sb-based III-V cooler. 19th International Conference on Thermoelectrics, Cardiff, Wales (2000)

    Google Scholar 

  167. Zeng, G., Shakouri, A., Bounty, C.L., Robinson, G., Croke, E., Abraham, P., Fan, X., Reese, H., Bowers, J.E.: SiGe micro-cooler, Electronics Letters 35 (24), 2146–7, 25 (1999)

    Google Scholar 

  168. Fan, X., Zeng, G., LaBounty, C., Croke, E., Vashaee, D., Shakouri, A., Ahn, C., Bowers, J.E.: High cooling power density SiGe/Si microcoolers, Elec. Lett. 37 (2), 126 (2001)

    Article  Google Scholar 

  169. Fan, X., Zeng, G., Croke, E., Robinson, G., LaBounty, C., Shakouri, A., and Bowers, J.E.: SiGe/Si superlattice coolers, Physics of Low-Dimensional Structures 56, 1–9 (2000)

    Google Scholar 

  170. Zhang, Y., Zeng, G., Shakouri, A., Wang, P., Yang B. and Bar-Cohen, A.: Optimization of doping concentration for three-dimensional bulk silicon microrefrigerators, 22nd IEEE SEMI-THERM Symposium (2006)

    Google Scholar 

  171. Dilhaire, S., Ezzahri, Y., Grauby, S., Claeys, W., Christofferson, J., Zhang, Y. and Shakouri, A.: Thermal and thermomechanical study of micro-refrigerators on a chip based on semiconductor heterostructures. 22nd International Conference on Thermoelectrics (Cat. No.03TH8726), IEEE pp. 519–523 (2003)

    Google Scholar 

  172. Zhang Y., Vashaee D., Christofferson, J., Zeng, G., LaBounty, C., Piprek, J., Croke, Ed., and Shakouri, A.: 3D electrothermal simulation of heterostructure thin film microcooler. 2003 ASME Symposium on the Analysis and Applications of Heat Pump & Refrigeration Systems Proceedings, Washington, DC (2003)

    Google Scholar 

  173. Vashaee, D., Christofferson, J., Zhang, Y., Shakouri, A., Zeng, G.H., LaBounty, C., Fan, XF., Piprek, J., Bowers, J.E., and Croke., E.: Modeling and optimization of single-element bulk SiGe thin-film coolers, Microscale Thermophysical Engineering 9 (1), 99–118 (2005)

    Google Scholar 

  174. Zeng, G., Fan, X., Labounty, C., Croke, E., Zhang, Y., Christofferson, J., Vashaee, D., Shakouri A., and Bowers, J.E.: Cooling power density of SiGe/Si superlattice micro-refrigerators, Materials Research Society Fall Meeting 2003, Proceedings 793, 43 (2003)

    Google Scholar 

  175. Shakouri, A., Labounty C.: Material optimization for heterostructure integrated thermionic coolers, International Conference on Thermoelectrics, Baltimore, MD (1999)

    Google Scholar 

  176. Fitting, A., Christofferson, J., Shakouri, A., Fan, X., Zeng G., LaBounty, C., Bowers, JE., Croke, E.: Transient response of thin film SiGe microcoolers, International Mechanical Engineering Congress and Exhibition (IMECE 2001), New York, NY (2001)

    Google Scholar 

  177. Shakouri, A., Zhang, Y.: On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 28 (1), 65–69 (2005); Zhang Y., Christofferson, J., Shakouri, A., Zeng, G., Bowers, J.E., Croke, E.: High-speed localized cooling using SiGe superlattice microrefrigerators. Nineteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No. 03CH37437), pp. 61–65 (2003)

    Google Scholar 

  178. Fukutani, K., Zhang, Y. and Shakouri, A.: Solid-state microrefrigerators on a chip, Electronic Cooling 12 (3), 18–26 (2006)

    Google Scholar 

  179. Fan, X.: Ph.D. dissertation, Univ. California, Santa Barbara

    Google Scholar 

  180. Vashaee, D.: Ph.D. dissertation, Univ. California, Santa Cruz

    Google Scholar 

  181. Christofferson, J., and Shakouri, A.: Thermoreflectance based thermal microscope, Rev. Sci. Instrum. 76, 024903–1 (2005)

    Article  ADS  Google Scholar 

  182. Huxtable, S.T., Abramson, A.R., Tien, C.-L., Majumdar, A., LaBounty, C., Fan, X., Zeng, G., Bowers, J.E., Shakouri, A., Croke, E.T.: Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices, Applied Physics Letters 80 (10), 1737–1739 (2002); Li, D., Huxtable, S.T., Abramson, A.R., Majumdar, A.: Thermal transport in nanostructured solid-state cooling devices, Transactions of the ASME, Journal of Heat Transfer 127 (1), 108–114 (2005)

    Google Scholar 

  183. Cahill D.G.: Thermal conductivity measurement from 30 to 750 K: The 3 omega method, Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  184. Fan, X., Zeng, G., LaBounty, C., Vashaee, D., Christofferson, J., Shakouri, A., and Bowers, J.E.: Integrated cooling for Si-based microelectronics. 20th International Conference on Thermoelectrics (Cat. No. 01TH8589), Beijing, China, 405–408 (2001)

    Google Scholar 

  185. Ezzahri, Y., Singh, R., Christofferson, J., Bian, Z., Shakouri, A.: Optimization of Si/SiGe microrefrigerators for hybrid solid-state/liquid cooling, InterPACK, paper 33878 (2007)

    Google Scholar 

  186. Ezzahri, Y., Zeng, G., Fukutani, K., et al.: A comparison of thin film microrefrigerators based on Si/SiGe superlattice and bulk SiGe, Microelectronics J. 39, 981 (2008)

    Article  Google Scholar 

  187. Rawat, V., and Sands, T.: Growth of TiN/GaN metal/semiconductor multilayers by reactive pulsed laser deposition, J. Appl. Phys. 100, 064901 (2006); Rawat, V., and Sands, T.: TiN/GaN metal/semiconductor multilayer nanocomposites grown by reactive pulsed laser deposition, MRS Proc. 872, J21.4.1–6 (2005)

    Google Scholar 

  188. Kim, W., Singer, S., Majumdar, A., Zide, J., Gossard, A., and Shakouri, A.: Role of nanostructures in reducing thermal conductivity below alloy limit in crystalline solids, 24th International Conference on Thermoelectrics, pp. 9–12 (2005)

    Google Scholar 

  189. Kim, W., Singer, S., Majumdar, A., Vashaee, D., Bian, Z., Shakouri, A., Zeng, G., Bowers, J.E., Zide, J.M.O., Gossard, A.C.: Cross-plane lattice and electronic thermal conductivities of ErAs: InGaAs/InGaAlAs superlattices, Appl. Phys. Lett. 88, 242107 (2006)

    Article  ADS  Google Scholar 

  190. Kim, W., Zide, J.M., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors, Phys. Rev. Lett. 96, no. 4, 045901/1–4 (2006)

    ADS  Google Scholar 

  191. Zeng, G., Zide, J.M.O., Kim, W., Bowers, J.E., Gossard, A.C., Bian, Z., Zhang, Y., Shakouri, A., Singer, S.L., Majumdar, A.: Cross-plane Seebeck coefficient of ErAs:InGaAs/InGaAlAs superlattices, Journal of Applied Physics 101 (3), 34502-1–5 (2007)

    Article  Google Scholar 

  192. Zide, J.M., Vashaee, D., Zeng, G., Bowers, J.E., Shakouri, A., and Gossard, A.C.: Demonstration of electron filtering to increase the Seebeck coefficient in ErAs:InGaAs/InGaAlAs superlattices, Physical Review B 74 (20), 205335-1–5 (2006)

    Article  ADS  Google Scholar 

  193. Zebarjadi, M., Esfarjani, K., Shakouri, A., Bahk, JH., Bian, ZX., Zeng, G., Bowers, J.E., Lu, H., Zide, J.M.O., and Gossard, A.: Effect of nanoparticle scattering on thermoelectric power factor, to appear in App. Phys. Lett. (2009)

    Google Scholar 

  194. Zebarjadi, M., Esfarjani, K., Shakouri, A., Bian, Z.X., Bahk, J.H., Zeng, G., Bowers, J.E., Lu, H., Zide, J.M.O., and Gossard, A.: Effect of nanoparticle scattering on electronic and thermoelectric transport, J. of Electronic Materials, first published online (DOI: 10.1007/s11664-008-0656-4) (2009)

    Google Scholar 

  195. Zeng, G., Bahk, J.-H., Bowers, J.E., Zide, J.M.O., Gossard, A.C., Bian, Z., Singh, R., Shakouri, A., Kim, W., Singer, S.L., and Majumdar, A.: ErAs:(InGaAs)1 − x (InAlAs) x alloy power generator modules, Appl. Phys. Lett. 91, 263510 (2007)

    Article  ADS  Google Scholar 

  196. Rawat, V., Koh, Y.K., Cahill, D.G, et al.: Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices, J. Appl. Phys 105, 024909 (2009)

    Google Scholar 

  197. Zebarjadi, M., Bian, Z.X., Singh, R., Shakouri, A., Wortman, R., Rawat, V., and Sands, T.: Thermoelectric transport in a ZrN/ScN Superlattice, Journal of Electronic Materials, first published online (DOI: 10.1007/s11664-008-0639-5) (2009)

    Google Scholar 

  198. Wilk, A., Kovsh, A.R., Mikhrin, S.S., Chaix, C., Novikov, I.I., Maximov, M.V., Shernyakov, Yu.M., Ustinov, V.M., Ledentsov, N.N.: High-power 1. 3μm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system, Journal of Crystal Growth 278, No. 1–4, 335–341 (2005); Bacher, K., Massie, S., Hartzel, D., Stewart, T.: Present ability of commercial molecular beam epitaxy, International Conference on Indium Phosphide and Related Materials (Cat. No. 97CH36058), pp. 351–352 (1997)

    Google Scholar 

  199. Zeng, G., Bowers, J.E., Zide, J.M.O., Gossard, A.C., Kim, W., Singer, S., Majumdar, A., Singh, R., Bian, Z., Zhang, Y., and Shakouri, A.: ErAs:InGaAs/InGaAlAs superlattice thin-film power generator array, Applied Physics Letters 88, 13502-1–3 (2006)

    Google Scholar 

  200. Dutta, N.K., Cella, T., Brown, R.L., Huo, D.T.C.: Monolithically integrated thermoelectric controlled laser diode, Applied Physics Letters 47, 222–224 (1985)

    Article  ADS  Google Scholar 

  201. Chen, G.: Heat transfer in micro- and nanoscale photonic devices, Annual Review of Heat Transfer 7, 1–57 (1996)

    MATH  Google Scholar 

  202. Piprek, J., Akulova, Y.A., Babifc, D.I., Coldren, L.A., Bowers, J.E.: Minimum temperature sensitivity of 1. 55μm vertical-cavity lasers at 30 nm gain offset, Applied Physics Letters 72, 1814–1816 (1998)

    Article  ADS  Google Scholar 

  203. Berger, P.R., Dutta, N.K., Choquette, K.D., Hasnain, G., Chand, N.: Monolithically Peltier-cooled vertical-cavity surface-emitting lasers, Applied Physics Letters 59, 117–119 (1991)

    Article  ADS  Google Scholar 

  204. Corser, T.A.: Qualification and reliability of thermoelectric coolers for use in laser modules. 41st Electronic Components and Technology Conference, Atlanta, GA, USA, May, pp. 150–156 (1991)

    Google Scholar 

  205. Cheng, Y.K., Tsai, C.H., Teng, C.C., and Kang, S.M.: Electrothermal Analysis of VLSI Systems, Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  206. http://www.thermion-company.com

  207. http://www.micropelt.com/

  208. http://www.nextremethermal.com

  209. Chowdhury, Prasher R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, R., Alley, R., and Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics, Nature Nanotechnology 4, 235–238 (2008)

    Article  ADS  Google Scholar 

  210. Kishi, M., Nemoto, H., Hamao, T., Yamamoto, M., Sudou, S., Mandai, M., and Yamamoto, S.: Micro thermoelectric modules and their application to wrist watches as an energy source, Proc. Int. Conf. Thermoelectrics, pp. 301–307 (1999)

    Google Scholar 

  211. Leonov, V., Torfs, T., Fiorini, P., Van Hoof, C.: Thermoelectric converters of human warmth for self-powered wireless sensor nodes, IEEE Sensors Journal 7, 650–657 (2007)

    Article  Google Scholar 

  212. Muller, E., Walczak, S., and Seifert, W.: Optimization strategies for segmented Peltier coolers, Phys. Stat. Sol. (a) 203, 2128 (2006)

    Article  ADS  Google Scholar 

  213. Snyder, G.J., and Ursell, T.S.: Thermoelectric efficiency and compatibility, Phys. Rev. Lett. 91, 148301 (2003)

    Article  ADS  Google Scholar 

  214. Bian, Z., and Shakouri, A.: Beating the maximum cooling limit with graded thermoelectric materials, Appl. Phys. Lett. 89, 212101 (2006)

    Article  ADS  Google Scholar 

  215. Bian, Z., Wang, H., Zhou, Q., and Shakouri, A.: Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials, Phys. Rev. B 75, 245208 (2007)

    Article  ADS  Google Scholar 

  216. Lee, S.M., and Cahill, D.G.: Heat transport in thin dielectric films, J. Applied Physics 81, 2590–2595 (1997)

    Article  ADS  Google Scholar 

  217. Borca-Tasciuc, T., Kumar, R., and Chen, G.: Data reduction in 3ω method for thin film thermal conductivity measurements, Review of Scientific Instruments 72, 2139–2147 (2001)

    Article  ADS  Google Scholar 

  218. Cahill, D.G., Fischer, H.E., Klitsner, T., Swartz, E.T., and Pohl, R.O.: Thermal conductivity of thin films: Measurement and understanding, J. Vacuum Science and Technolnology A 7, 1259–1266 (1989)

    Article  ADS  Google Scholar 

  219. Hatta, I.: Thermal diffusivity measurement of thin films and multilayered composites, Int. J. Thermophys. 11, 293–303 (1990)

    Article  ADS  Google Scholar 

  220. Volklein, F., and Starz, T.: Thermal conductivity of thin films: Experimental methods and theoretical interpretation, Proc. Int. Conf. Thermoelectrics, ICT’97, pp. 711–718 (1997)

    Google Scholar 

  221. Goodson, K.E., and Ju, Y.S.: Heat conduction in novel electronic films, Ann. Rev. Mat. 29, 261–293 (1999)

    Article  ADS  Google Scholar 

  222. Cahill, D.G.: Analysis of heat flow in layered structures for time-domain thermoreflectance, Rev. Sci. Instrum. 75, 5119 (2004)

    Article  ADS  Google Scholar 

  223. Schmidt, A.J., Chen, X., and Chen, G.: Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump–probe transient thermoreflectance, Review of Scientific Instruments 79, 114902 (2008)

    Article  ADS  Google Scholar 

  224. Huxtable, S., Cahill, D.G., Fauconnier, V., White, J.O., and Zhao, J.C.: Thermal conductivity imaging at micron-scale resolution for combinatorial studies of materials, Nature Materials 3, 298–301 (2004)

    Article  ADS  Google Scholar 

  225. Yang, B., Liu, J.L., Wang, K.L., and Chen, G.: Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice, Applied Physics Letters 80, 1758–1760 (2002)

    Article  ADS  Google Scholar 

  226. Zeng, G., Bowers, J.E., Zhang, Y., Shakouri, A., Zide, J., Gossard, A., Kim, W., and Majumdar, A.: ErAs/InGaAs superlattice Seebeck coefficient, Proceedings of the 24th International conference on Thermoelectrics, Clemson, SC, pp. 485–488 (2005)

    Google Scholar 

  227. Singh, R., Bian, Z., Zeng, G., Zide, J., Christofferson, J., Chou, H., Gossard, A., Bowers, J.E., and Shakouri, A.: Transient Harman measurement of the cross-plane ZT of InGaAs/InGaAlAs superlattices with embedded ErAs nanoparticles, Proceedings of MRS Fall Meeting, Boston (2005)

    Google Scholar 

  228. Bian, Z., Zhang, Y., Schmidt, H., Shakouri, A.: Thin film ZT characterization using transient Harman technique, 24th International Conference on Thermoelectrics (ICT) (Cat. No.05TH8854C), IEEE, pp. 76–78 (2005)

    Google Scholar 

  229. Harman, T.C.: Special techniques for measurement of thermoelectric properties, Journal of Applied Physics 29 (9), 1373–1374 (1958)

    Article  ADS  Google Scholar 

  230. Singh, R., and Shakouri, A.: Thermostat for high temperature and transient characterization of thin film thermoelectric materials, Rev. of Scientific Instruments 80, 025101 (2009); For a detailed analysis of the cross-plane ZT and Seebeck extraction see: Singh, R., et al.: to be published in Applied Physics Letters (2009)

    Google Scholar 

  231. Mavrokefalos, A., Pettes, M.A., Zhou, F., Shi, L.: Four-probe measurements of the in-plane thermoelectric properties of nanofilms, Review of Scientific Instruments 78, 034901 (2007)

    Article  ADS  Google Scholar 

  232. R.E. Nelson: A brief history of thermophotovoltaic development, Semiconductor Science and Technology 18 (5), S141–S143 (2003); Harder, N.-P., Wurfel, P.: Theoretical limits of thermophotovoltaic solar energy conversion, Semiconductor Science and Technology 18 (5), S151–S157 (2003)

    Google Scholar 

  233. Green, M.: Third Generation Photovoltaics and Advanced Solar Conversion, Springer-Verlag (2003)

    Google Scholar 

  234. Baldasaro, P.F., Dashiell, M.W., Oppenlander, J.E., Vell, J.L., Fourspring, P., Rahner, K., Danielson, L.R., Burger, S., Brown, E.: System performance projections for TPV energy conversion, American Institute of Physics Conference Proceedings, no. 738, pp. 61–70 (2004); Baldasaro, P.F., Raynolds, J.E., Charache, G.W., DePoy, D.M., Ballinger, C.T., Donovan, T., Borrego, J.M.: Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs, Journal of Applied Physics 89 (6), 3319–3327 (2001)

    Google Scholar 

  235. Humphrey, T.E., and Linke, H.: Inhomogeneous doping in thermoelectric nanomaterials. Plenary presentation at the International Thermoelectrics Conference, Adelaide (2004) cond-mat/0407506

    Google Scholar 

  236. Kittel, K., and Kroemer, H.: Thermal Physics, 2nd edn., W.H. Freeman Company (1980)

    Google Scholar 

  237. Sander, M.S., Gronsky, R., Sands, T., Stacy, A.M.: Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates, Chemistry of Materials 15 (1), 335–339 (2003)

    Article  Google Scholar 

  238. Radtke, R.J., Ehrenreich, H., and Grein, C.H.: Multilayer thermoelectric refrigeration in Hg1 − x Cd x Te superlattices, Journal of Applied Physics 86 (6) 3195–3198 (1999)

    Article  ADS  Google Scholar 

  239. Zeng, T.F., and Chen, G.: Energy conversion in heterostructures for thermionic cooling, Microscale Thermophysical Engineering 4, 39–50 (2000)

    Article  Google Scholar 

  240. Reggiani, L. (Ed.): Hot-Electron Transport in Semiconductors, Springer-Verlag (1985)

    Google Scholar 

  241. Qiu, T.Q., and Tien, C.L.: Heat transfer mechanisms during short-pulse laser heating of metals, J. Heat Transfer 115, 835–841 (1993)

    Article  Google Scholar 

  242. Zeng, T.F., and Chen, G.: Nonequilibrium electron and phonon transport in heterostructures for energy conversion, Proceedings of Int. Mech. Eng. Congress and Exhibition (IMECE2000), ASME HTD, Vol. 366-2, 361–372 (2000)

    Google Scholar 

  243. Vashaee, D. and Shakouri, A.: Non-equilibrium electrons and phonons in heterostructure integrated thermionic coolers, Microscale Thermophysical Engineering 8, 91–100 (2004)

    Article  Google Scholar 

  244. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn., Wiley Interscience (1981)

    Google Scholar 

  245. Pipe, K.P., Ram, R.J., and Shakouri, A.: Bias-dependent Peltier coefficient and internal cooling in bipolar devices, Phys. Rev. B 66, 125316, 27, 1–11 (2002)

    Google Scholar 

  246. Lyeo, H.K., Khajetoorians, A.A., Shi, L., Pipe, K.P., Ram, R.J., Shakouri, A., and Shih, C.K.: Profiling the thermoelectric power of semiconductor junctions with nanometer resolution, Science 303, 816–818 (2004)

    Article  ADS  Google Scholar 

  247. Shakouri, A., Bowers, J.E.: Heterostructure integrated thermionic refrigeration, 16th International Conference on Thermoelectrics (Cat. No.97TH8291), IEEE, pp. 636–640 (1997)

    Google Scholar 

  248. Pipe, K.P., Ram, R.J., and Shakouri, A.: Internal cooling in a semiconductor laser diode, IEEE Photonics Technology Letters 14 (4), 453–455 (2002)

    Article  ADS  Google Scholar 

  249. Mungan, C.E., Buchwald, M.I., Edwards, B.C., Epstein, R.I., and Gosnell, T.R.: Laser cooling of a solid by 16 K starting from room temperature, Physical Review Letters 78 (6), 1030 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The experimental and theoretical data presented in the figures are the results of the work of outstanding students and postdocs: Chris Labounty, Xiaofeng Fan, Gehong Zeng, Daryoosh Vashaee, James Christofferson, Yan Zhang, Zhixi Bian, Kazuhiko Fukutani, Rajeev Singh, Alberto Fitting, Younes Ezzahri, Tela Favaloro, Philip Jackson, Joshua Zide, Je-Hyeong Bahk, Hong Lu, Vijay Rawat, Peter Mayer, Woochul Kim, Suzanne Singer and Scott Huxtable. The authors would like to acknowledge a very fruitful collaboration with Profs. John Bowers, Art Gossard, Susanne Stemmer (UCSB), Arun Majumdar, Peidong Yang (Berkeley), Venky Narayanamurti (Harvard), Rajeev Ram (MIT), Tim Sands (Purdue), Yogi Joshi and Andrei Federov (Georgia Tech), Bob Nemanich (ASU), Avram Bar-Cohen (Maryland), Keivan Esfarjani and Sriram Shastry (UCSC), Stefan Dilhaire (Univ. of Bordeaux), Li Shi (Univ. of Texas), Kevin Pipe (Univ. of Michigan), Joshua Zide (Univ. of Delaware), Ceyhun Bulutay (Bilkent Univ.) Lon Bell (BSST) and Dr. Ed. Croke (HRL Laboratories LLC). This work was supported by DARPA MTO and DSO offices, ONR MURI Thermionic Energy Conversion Center, Packard Foundation, and the Interconnect Focused Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shakouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shakouri, A., Zebarjadi, M. (2009). Nanoengineered Materials for Thermoelectric Energy Conversion. In: Volz, S. (eds) Thermal Nanosystems and Nanomaterials. Topics in Applied Physics, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04258-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04258-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04257-7

  • Online ISBN: 978-3-642-04258-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics