Skip to main content

Production and Operations Management: Models and Algorithms

  • Chapter
  • First Online:
Production and Inventory Management with Substitutions

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 636))

Abstract

This chapter intends to give an overview of the literature on dynamic lot-sizing models and stochastic transshipment models. These two types of models are used as a basis for developing models with substitution in the following chapters. Section 2.1 contains a classification of models for dynamic lot-sizing / production planning, and selected models. In Sect. 2.2, we give a brief overview of available methods for solving deterministic dynamic lot-sizing problems modeled using mixed-integer linear programming (MILP). Section 2.3 introduces transshipment problems and presents a classification scheme for transshipment models. Section 2.4 reviews selected solution approaches that can be applied to stochastic inventory control models such as transshipment problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We subsume dynamic lot-sizing problems as well as simultaneous lot-sizing and scheduling problems under the term “production planning problem”. Note that in literature, “(aggregate) production planning” may also refer to Master Planning (Rohde and Wagner, 2005) models.

  2. 2.

    Also see Fleischmann et al. (2005, p. 81f.) and Meyr (1999, p. 11ff.). regarding the classification of planning levels.

  3. 3.

    Note that the assumption of linear holding costs underlying most dynamic lot-sizing models is only a simplification: Usually, “snapshots” of the current inventory of a product are taken at the ends/beginnings of (macro-)periods to approximate the actual average inventory in each (macro-) period. For an exact calculation of holding costs based on (marginal) inventory changes within each period, it would be necessary to multiply the holding costs per quantity and time unit with the integral over the inventory level as a function of the current time. This is because the inventory of a product can change within a period if the production speed is finite. For example, considering the CLSD that assumes fixed production speeds (see Sect. 2.1.4), the inventory level as a function of time would be a piecewise linear function. However, the common approach of approximating it seems sufficiently precise for practical purposes. Beyond this, the general idea of using holding costs can be criticized because it is difficult to measure these opportunity costs due to capital lockup in practice. Also, it should be noted that lot-sizing problem data like demand forecasts are subject to uncertainty anyway, which might render the mentioned imprecision of holding costs calculations insignificant. On the accurate calculation of holding costs in dynamic lot-sizing models, also see Stammen-Hegener (2002, p. 143f.).

  4. 4.

    This constraint group is based on the same idea as the Miller–Tucker–Zemlin subtour elimination constraints for the Asymmetric Traveling Salesman Problem (ATSP) (Domschke, 1997, p. 106f.).

  5. 5.

    The constraint (2.60) is slightly more restrictive than necessary. It always ensures temporal feasibility of a solution, but excludes some feasible solutions (F. Seeanner 2009, personal communication): (2.60) is always enforced, no matter whether both the slow predecessor i and its successor k are actually produced on resources r 1 and r 2, respectively, in s − 1. If i is not produced on r 1 in s − 1, (2.60) still enforces that \({w}_{s} - {w}_{s-1} \geq {y}_{{r}_{1},s-1}^{b} + {y}_{{r}_{2},s-1}^{e}\), which unnecessarily limits the duration of split setups on r 1 and r 2 involving other products. Considering the case that k is not produced on r 2 in s − 1, (2.60) is still enforced although the solution shown in Fig. 2.12a would not violate temporal constraints. Equation (2.60) can be formulated in a less restrictive way by introducing setup splitting variables for each possible changeover from one product h to another product j, i.e., by introducing additional indices h and j for the y b and y e variables. These variables y rhjs b and y rhjs e denote the setup time consumed by a changeover from product h to j on resource r at the beginning and end of micro-period s, respectively (F. Seeanner 2009, personal communication). With these variables, one can reformulate (2.60) so that only relevant durations of changeovers involving the products i and k are included.

  6. 6.

    Just as (2.60), (2.61) is more restrictive than necessary and can be reformulated in a less restrictive way using the variables y riks b and y riks e mentioned in footnote 5 (F. Seeanner 2009, personal communication). A schedule with the property enforced by (2.61) is shown in Fig. 2.13b.

  7. 7.

    See Desrosiers and Lübbecke (2005); Huisman et al. (2005); Lübbecke and Desrosiers (2005); Ralphs et al. (2001, 2003); Vanderbeck (2003, 2005); Wilhelm (2001) for additional literature.

  8. 8.

    For additional literature see, e.g., Diaby et al. (1992a,b); Thizy and van Wassenhove (1985).

  9. 9.

    The usage of decompositions in R&F and F&O resembles the decompositions methods in SAP® APO: The Supply Network Planning (SNP) Optimizer offers decompositions by time, product, and resource (Kallrath and Maindl, 2006, pp. 84 and 89). The subproblems into which the problem is decomposed are solved sequentially. The time decomposition uses time windows as in R&F. The product decomposition optimizes the variables associated with a certain subset of products in each subproblem. It thus differs from the product decomposition in F&O that only considers one product per subproblem. So-called SNP priority profiles can be specified to provide the SNP Optimizer with information that helps decompose the problem using the product or resource decomposition in an appropriate way.

  10. 10.

    All transshipment models considered in this work are stochastic.

  11. 11.

    This criterion refers to the behavior of an algorithm, and should not be confused with the robustness criteria for solutions used in Robust Optimization.

  12. 12.

    E.g., Liao and Rittscher (2007b) consider a supplier selection problem where the flexibility provided by options for increasing or reducing supply quantities and for reducing supplier lead times is valued in the objective function. Such options that give additional flexibility can increase the (problem-specific) robustness of a solution to the problem.

References

  • Aissaoui, N., Haouari, M., & Hassini, E. (2007). Supplier selection and order lot sizing modeling: A review. Computers & Operations Research, 34(12), 3516–3540.

    Google Scholar 

  • Akartunalı, K., & Miller, A. (2009). A heuristic approach for big bucket multi-level production planning problems. European Journal of Operational Research, 193(2), 396–411.

    Google Scholar 

  • Alfieri, A., Brandimarte, P., & D’Orazio, S. (2002). LP-based heuristics for the capacitated lot-sizing problem: The interaction of model formulation and solution algorithm. International Journal of Production Research, 40(2), 441–458.

    Google Scholar 

  • Almada-Lobo, B., Klabjan, D., Carravilla, M., & Oliveira, J. (2007). Single machine multi-product capacitated lot sizing with sequence-dependent setups. International Journal of Production Research, 45(20), 4873–4894.

    Google Scholar 

  • Almada-Lobo, B., Oliveira, J., & Carravilla, M. A. (2008). A note on “the capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times”. Computers & Operations Research, 35(4), 1374–1376.

    Google Scholar 

  • Archibald, T. W. (2007). Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems. Journal of the Operational Research Society, 58(7), 948–956.

    Google Scholar 

  • Balakrishnan, A., & Geunes, J. (2000). Requirements planning with substitutions: Exploiting bill-of-materials flexibility in production planning. Manufacturing & Service Operations Management, 2(2), 166–185.

    Google Scholar 

  • Banerjee, A., Burton, J., & Banerjee, S. (2003). A simulation study of lateral shipments in single supplier, multiple buyers supply chain networks. International Journal of Production Economics, 81–82, 103–114.

    Google Scholar 

  • Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., & Vance, P. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

    Google Scholar 

  • Bayindir, Z., Erkip, N., & Guellue, R. (2007). Assessing the benefits of remanufacturing option under one-way substitution and capacity constraint. Computers & Operations Research, 34(2), 487–514.

    Google Scholar 

  • Belvaux, G., & Wolsey, L. A. (2000). bc-prod: A specialized branch-and-cut system for lot-sizing problems. Management Science, 46(5), 724–738.

    Google Scholar 

  • Belvaux, G., & Wolsey, L. A. (2001). Modelling practical lot-sizing problems as mixed-integer programs. Management Science, 47(7), 993–1007.

    Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization – methodology and applications. Mathematical Programming, 92(3), 453–480.

    Google Scholar 

  • Beraldi, P., Ghiani, G., Grieco, A., & Guerriero, E. (2006). Fix and relax heuristic for a stochastic lot-sizing problem. Computational Optimization and Applications, 33(2), 303–318.

    Google Scholar 

  • Beraldi, P., Ghiani, G., Grieco, A., & Guerriero, E. (2008). Rolling-horizon and fix-and-relax heuristics for the parallel machine lot-sizing and scheduling problem with sequence-dependent set-up costs. Computers & Operations Research, 35(11), 3644–3656.

    Google Scholar 

  • Bhaumik, P., & Kataria, S. (2006). Lateral transshipment for managing excesses and shortages in a multilocation inventory system: A case study of Timex Watches Ltd. International Journal of Services Technology and Management, 7(5), 602–614.

    Google Scholar 

  • Brahimi, N., Dauzere-Peres, S., & Najid, N. (2006). Capacitated multi-item lot-sizing problems with time windows. Operations Research, 54(5), 951–967.

    Google Scholar 

  • Brandimarte, P. (2006). Multi-item capacitated lot-sizing with demand uncertainty. International Journal of Production Research, 44(15), 2997–3022.

    Google Scholar 

  • Caserta, M., & Rico, E. (2009). A cross entropy-lagrangean hybrid algorithm for the multi-item capacitated lot-sizing problem with setup times. Computers & Operations Research, 36(2), 530–548.

    Google Scholar 

  • Chand, S., Hsu, V., & Sethi, S. (2002). Forecast, solution, and rolling horizons in operations management problems: A classified bibliography. Manufacturing & Service Operations Management, 4(1), 25–43.

    Google Scholar 

  • Cheung, K., & Lee, H. (2002). The inventory benefit of shipment coordination and stock rebalancing in a supply chain. Management Science, 48(2), 300–306.

    Google Scholar 

  • Chou, M., Sim, M., & So, K. (2006). A robust optimization framework for analyzing distribution systems with transshipment (Working paper). Singapore: School of Business, National University of Singapore.

    Google Scholar 

  • Comez, N., Stecke, K. E., & Cakanyldrm, M. (2006). Virtual pooling considering transshipment lead time (Working paper). Dallas, TX: School of Management, University of Texas at Dallas.

    Google Scholar 

  • de Araujo, S., Arenales, M., & Clark, A. (2007). Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. Journal of Heuristics, 13(4), 337–358.

    Google Scholar 

  • Degraeve, Z., & Jans, R. (2007). A new Dantzig-Wolfe reformulation and branch-and-price algorithm for the capacitated lot-sizing problem with setup times. Operations Research, 55(5), 909–920.

    Google Scholar 

  • Denizel, M., Altekin, F. T., Süral, H., & Stadtler, H. (2008). Equivalence of the LP relaxations of two strong formulations for the capacitated lot-sizing problem with setup times. OR Spectrum, 30(4), 773–785.

    Google Scholar 

  • Denton, B., & Gupta, D. (2004). Strategic inventory deployment in the steel industry. IIE Transactions, 36(11), 1083–1097.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M., & Soumis, F. (2002). VRP with pickup and delivery. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 225–242). Philadelphia: SIAM.

    Google Scholar 

  • Diaby, M., Bahl, H., Karwan, M., & Zionts, S. (1992a). Capacitated lot-sizing and scheduling by lagrangean relaxation. European Journal of Operational Research, 59(3), 444–458.

    Google Scholar 

  • Domschke, W. (1997). Logistik: Rundreisen und Touren (4th edn.). Munich: Oldenbourg Wissenschaftsverlag

    Google Scholar 

  • Domschke, W., & Scholl, A. (2005). Grundlagen der Betriebswirtschaftslehre (3rd edn.). Berlin: Springer.

    Google Scholar 

  • Domschke, W., Scholl, A., & Voß, S. (1997). Produktionsplanung – Ablauforganisatorische Aspekte (2nd edn.). Berlin: Springer.

    Google Scholar 

  • Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling – survey and extensions. European Journal of Operational Research, 99(2), 221–235.

    Google Scholar 

  • Eppen, G., & Martin, R. (1987). Solving multi-item capacitated lot-sizing problems using variable redefinition. Operations Research, 35(6), 832–848.

    Google Scholar 

  • Ertogral, K., & Wu, S. (2000). Auction-theoretic coordination of production planning in the supply chain. IIE Transactions, 32(10), 931–940.

    Google Scholar 

  • Evers, P. (2001). Heuristics for assessing emergency transshipments. European Journal of Operational Research, 129(2), 311–316.

    Google Scholar 

  • Federgruen, A., Meissner, J., & Tzur, M. (2007). Progressive interval heuristics for multi-item capacitated lot sizing problems. Operations Research, 55(3), 490.

    Google Scholar 

  • Fisher, M. (1981). The lagrangian relaxation method for solving integer programming problems. Management Science, 27(1), 1–18.

    Google Scholar 

  • Fleischmann, B. (1994). The discrete lot-sizing and scheduling problem with sequence-dependent setup costs. European Journal of Operational Research, 75(2), 395–404.

    Google Scholar 

  • Fleischmann, B. (2001). On the use and misuse of holding cost models. In P. Kischka, U. Leopold-Wildburger, R. Möhring, & F.-J. Radermacher (Eds.), Models, methods and decision support for management: Essays in honor of Paul Stähly (pp. 147–164). Heidelberg: Physica.

    Google Scholar 

  • Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR Spectrum, 19(1), 11–21.

    Google Scholar 

  • Fu, M. C. (2006). Stochastic gradient estimation. In S. Henderson & B. Nelson (Eds.), Handbook on operations research and management science: Simulation. Amsterdam: Elsevier.

    Google Scholar 

  • Gebhard, M., & Kuhn, H. (2007). Robuste hierarchische Produktionsplanung mit Bedarfsszenarien. In A. Otto & R. Obermaier (Eds.), Logistikmanagement 2007: Analyse, Bewertung und Gestaltung logistischer Systeme (pp. 161–183). Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag.

    Google Scholar 

  • Geunes, J. (2003). Solving large-scale requirements planning problems with component substitution options. Computers & Industrial Engineering, 44(3), 475–491.

    Google Scholar 

  • Gosavi, A. (2003). Simulation-based optimization: Parametric optimization techniques and reinforcement learning. Boston: Kluwer.

    Google Scholar 

  • Guan, Y., Ahmed, S., Nemhauser, G., & Miller, A. (2006). A branch-and-cut algorithm for the stochastic uncapacitated lot-sizing problem. Mathematical Programming, 105(1), 55–84.

    Google Scholar 

  • Gupta, D., & Magnusson, T. (2005). The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers & Operations Research, 32(4), 727–747.

    Google Scholar 

  • Haase, K. (1996). Capacitated lot-sizing with sequence dependent setup costs. OR Spectrum, 18(1), 51–59.

    Google Scholar 

  • Haase, K. (2001). Beschaffungs-Controlling – Kapitalwertorientierte Bestellmengenplanung bei Mengenrabatten und dynamischer Nachfrage. Zeitschrift für Betriebswirtschaft, 71, 19–31.

    Google Scholar 

  • Haase, K., & Kimms, A. (2000). Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. International Journal of Production Economics, 66(2), 159–169.

    Google Scholar 

  • Hax, A., & Meal, H. (1975). Hierarchical integration of production planning and scheduling. In M. Geisler (Ed.), TIMS studies in the management sciences (Vol. 1, pp. 53–69). Amsterdam: North-Holland.

    Google Scholar 

  • Helber, S. (1994). Kapazitätsorientierte Losgrößenplanung in PPS-Systemen. Metzler & Poeschel Verlag für Wissenschaft und Forschung, Stuttgart, Germany.

    Google Scholar 

  • Helber, S., & Sahling, F. (2008). A Fix-and-Optimize Approach for the multi-level capacitated lot sizing problem (Working paper). Hannover, Germany: Institut für Produktionswirtschaft. Leibniz Universität Hannover.

    Google Scholar 

  • Herer, Y., Tzur, M., & Yücesan, E. (2006). The multilocation transshipment problem. IIE Transactions, 38(3), 185–200.

    Google Scholar 

  • Hsu, V. N., Li, C. L., & Xiao, W. Q. (2005). Dynamic lot size problems with one-way product substitution. IIE Transactions, 37, 201–215.

    Google Scholar 

  • Huisman, D., Jans, R., Peeters, M., & Wagelmans, A. (2005). Combining column generation and lagrangian relaxation. In D. Guy, S. Jacques, & M. Marius (Eds.), Column generation (pp. 247–270). Berlin: Springer.

    Google Scholar 

  • Inderfurth, K. (2004). Optimal policies in hybrid manufacturing/remanufacturing systems with product substitution. International Journal of Production Economics, 90(3), 325–343.

    Google Scholar 

  • Iravani, S., Lien, R., Smilowitz, K., & Tzur, M. (2005). Design principles for effective transshipment networks (Working paper). Evanston, IL: IE/MS department, Northwestern University, IL.

    Google Scholar 

  • Jans, R., & Degraeve, Z. (2006). Modeling industrial lot sizing problems: A review. International Journal of Production Research, 46(6), 1619–1643.

    Google Scholar 

  • Jans, R., & Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. European Journal of Operational Research, 177(3), 1855–1875.

    Google Scholar 

  • Kallrath, J. (2005). Solving planning and design problems in the process industry using mixed integer and global optimization. Annals of Operations Research, 140(1), 339–373.

    Google Scholar 

  • Kallrath, J., & Maindl, T. (2006). Real optimization with SAP APO. Berlin: Springer.

    Google Scholar 

  • Karimi, B., Fatemi Ghomi, S., & Wilson, J. (2003). The capacitated lot sizing problem: A review of models and algorithms. Omega, 31(5), 365–378.

    Google Scholar 

  • Kleber, R., & Inderfurth, K. (2007). A heuristic approach for inventory control of spare parts after end-of-production. In A. Otto & R. Obermaier (Eds.), Logistikmanagement 2007: Analyse, Bewertung und Gestaltung logistischer Systeme (pp. 185–200). Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag.

    Google Scholar 

  • Kolda, T., Lewis, R., & Torczon, V. (2004). Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review, 45, 385–482.

    Google Scholar 

  • Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Boston: Kluwer.

    Google Scholar 

  • Lang, J. C. (2005). Methoden der Simulationsbasierten Optimierung. Semester thesis, Department of Law, Business Administration and Economics, Technische Universität Darmstadt, Germany.

    Google Scholar 

  • Law, A. (2006). Simulation modeling and analysis (4th edn.). New York: McGraw-Hill.

    Google Scholar 

  • Lee, C., Cetinkaya, S., & Wagelmans, A. (2001). A dynamic lot-sizing model with demand time windows. Management Science, 47(10), 1384–1395.

    Google Scholar 

  • Lee, Y. H., Jung, J. W., & Jeon, Y. S. (2007). An effective lateral transshipment policy to improve service level in the supply chain. International Journal of Production Economics, 106(1), 115–126.

    Google Scholar 

  • Leung, S. C., Lai, K. K., Ng, W., & Wu, Y. (2007a). A robust optimization model for production planning of perishable products. Journal of the Operational Research Society, 58, 413–422.

    Google Scholar 

  • Lewis, R., & Torczon, V. (1999). Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization, 9(4), 1082–1099.

    Google Scholar 

  • Lewis, R., & Torczon, V. (2000). Pattern search methods for linearly constrained minimization. SIAM Journal on Optimization, 10, 917–941.

    Google Scholar 

  • Lewis, R., Torczon, V., & Trosset, M. (2000). Direct search methods: Then and now. Journal of Computational and Applied Mathematics, 124(1–2), 191–207.

    Google Scholar 

  • Li, Y., Chen, J., & Cai, X. (2007). Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing. International Journal of Production Economics, 105(2), 301–317.

    Google Scholar 

  • Liao, Z., & Rittscher, J. (2007a). Integration of supplier selection, procurement lot sizing and carrier selection under dynamic demand conditions. International Journal of Production Economics, 107(2), 502–510.

    Google Scholar 

  • Marchand, H., Martin, A., Weismantel, R., & Wolsey, L. (2002). Cutting planes in integer and mixed integer programming. Discrete Applied Mathematics, 123(1–3), 397–446.

    Google Scholar 

  • Meixell, M., & Norbis, M. (2008). A review of the transportation mode choice and carrier selection literature. The International Journal of Logistics Management, 19(2), 183–211.

    Google Scholar 

  • Meyr, H. (1999). Simultane Losgrössen-und Reihenfolgeplanung für kontinuierliche Produktionslinien: Modelle und Methoden im Rahmen des Supply Chain Management. Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag,

    Google Scholar 

  • Meyr, H. (2000). Simultaneous lotsizing and scheduling by combining local search with dual reoptimization. European Journal of Operational Research, 120(2), 311–326.

    Google Scholar 

  • Meyr, H. (2004a). Simultane Losgrößen-und Reihenfolgeplanung bei mehrstufiger kontinuierlicher Fertigung. Zeitschrift für Betriebswirtschaft, 74, 585–610.

    Google Scholar 

  • Meyr, H. (2004b). Supply chain planning in the German automotive industry. OR Spectrum, 26(4), 447–470.

    Google Scholar 

  • Minner, S., Silver, E. A., & Robb, D. J. (2003). An improved heuristic for deciding on emergency transshipments. European Journal of Operational Research, 148(2), 384–400.

    Google Scholar 

  • Mulvey, J., Vanderbei, R., & Zenios, S. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281.

    Google Scholar 

  • Parragh, S., Doerner, K., & Hartl, R. (2008a). A survey on pickup and delivery problems – part I: Transportation between customers and depot. Journal für Betriebswirtschaft, 58(1), 21–51.

    Google Scholar 

  • Pochet, Y., & Wolsey, L. (1991). Solving multi-item lot-sizing problems using strong cutting planes. Management Science, 37(1), 53–67.

    Google Scholar 

  • Pochet, Y., & Wolsey, L. (2006). Production planning by mixed integer programming. Berlin: Springer.

    Google Scholar 

  • Raa, B., & Aghezzaf, E. (2005). A robust dynamic planning strategy for lot-sizing problems with stochastic demands. Journal of Intelligent Manufacturing, 16(2), 207–213.

    Google Scholar 

  • Sahling, F., Buschkühl, L., Tempelmeier, H., & Helber, S. (2009). Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a Fix-and-Optimize heuristic. Computers & Operations Research, 36(9), 2546–2553.

    Google Scholar 

  • Scholl, A. (2001). Robuste Planung und Optimierung. Grundlagen – Konzepte und Methoden – Experimentelle Untersuchungen. Berlin: Springer.

    Google Scholar 

  • Silver, E. (2004). An overview of heuristic solution methods. Journal of the Operational Research Society, 55(9), 936–956.

    Google Scholar 

  • Snyder, L. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7), 547–564.

    Google Scholar 

  • Spall, J. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Technical Digest, 19(4), 482–492.

    Google Scholar 

  • Spall, J. (2003). Introduction to stochastic search and optimization. New York: Wiley.

    Google Scholar 

  • Stadtler, H. (1996). Mixed integer programming model formulations for dynamic multi-item multi-level capacitated lotsizing. European Journal of Operational Research, 94(3), 561–581.

    Google Scholar 

  • Stadtler, H. (1997). Reformulations of the shortest route model for dynamic multi-item multi-level capacitated lotsizing. OR Spectrum, 19(2), 87–96.

    Google Scholar 

  • Stadtler, H. (2000). Improved rolling schedules for the dynamic single-level lot-sizing problem. Management Science, 46(2), 318–326.

    Google Scholar 

  • Stadtler, H. (2003). Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research, 51(3), 487–502.

    Google Scholar 

  • Stammen-Hegener, C. (2002). Simultane Losgrößen-und Reihenfolgeplanung bei ein-und mehrstufiger Fertigung. Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag.

    Google Scholar 

  • Suerie, C., & Stadtler, H. (2003). The capacitated lot-sizing problem with linked lot sizes. Management Science, 49(8), 1039–1054.

    Google Scholar 

  • Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36(11), 1067–1081.

    Google Scholar 

  • Tempelmeier, H. (2006). Inventory management in supply networks – Problems, models, solutions. Norderstedt, Germany: Books on Demand.

    Google Scholar 

  • Tempelmeier, H. (2007). On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints. European Journal of Operational Research, 181, 184–194.

    Google Scholar 

  • Tempelmeier, H., & Derstroff, M. (1996). A lagrangean-based heuristic for dynamic multilevel multiitem constrained lotsizing with setup times. Management Science, 42(5), 738–757.

    Google Scholar 

  • Tempelmeier, H., & Helber, S. (1994). A heuristic for dynamic multi-item multi-level capacitated lotsizing for general product structures. European Journal of Operational Research, 75(2), 296–311.

    Google Scholar 

  • Toledo, F., & Armentano, V. (2006). A lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines. European Journal of Operational Research, 175(2), 1070–1083.

    Google Scholar 

  • Vanderbeck, F. (2003). Automated Dantzig-Wolfe re-formulation or how to exploit simultaneously original formulation and column generation re-formulation (Working paper). Bordeaux, France: Department of Applied Mathematics, University Bordeaux.

    Google Scholar 

  • Vyve, M. V., & Wolsey, L. A. (2006). Approximate extended formulations. Mathematical Programming, 105(2), 501–522.

    Google Scholar 

  • Wagner, H., & Whitin, T. (1958). Dynamic version of the economic lot sizing model. Management Science, 5(1), 89–96.

    Google Scholar 

  • Wee, K., & Dada, M. (2005). Optimal policies for transshipping inventory in a retail network. Management Science, 51(10), 1519–1533.

    Google Scholar 

  • Wilhelm, W. (2001). A technical review of column generation in integer programming. Optimization and Engineering, 2(2), 159–200.

    Google Scholar 

  • Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Google Scholar 

  • Wolsey, L. (1997). MIP modelling of changeovers in production planning and scheduling problems. European Journal of Operational Research, 99(1), 154–165.

    Google Scholar 

  • Wolsey, L. A. (2003a). Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Management Science, 48(12), 1587–1602.

    Google Scholar 

  • Wolsey, L. A. (2006). Lot-sizing with production and delivery time windows. Mathematical Programming: Series A, 107, 471–489.

    Google Scholar 

  • Xia, W., & Wu, Z. (2007). Supplier selection with multiple criteria in volume discount environments. Omega, 35, 494–504.

    Google Scholar 

  • Zhang, J. (2005). Transshipment and its impact on supply chain members performance. Management Science, 51(10), 1534–1539.

    Google Scholar 

  • Zhu, X., & Wilhelm, W. (2006). Scheduling and lot sizing with sequence-dependent setup: A literature review. IIE Transactions, 38(11), 987–1007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Christian Lang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, J.C. (2010). Production and Operations Management: Models and Algorithms. In: Production and Inventory Management with Substitutions. Lecture Notes in Economics and Mathematical Systems, vol 636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04247-8_2

Download citation

Publish with us

Policies and ethics