Skip to main content

Microbial Antagonists in Animal Health Promotion and Plant Protection

  • Chapter
  • First Online:
Microbes at Work

Abstract

The use of agrochemicals in animal husbandry and crop cultivation is well established, but the public acceptance is generally low and in some cases, substances have already been legally banned because their application poses risks for public health. Microbes that are able to suppress the growth of pathogens have been shown to be an effective alternative to maintain animal or plant health. Isolation and screening of potent strains as well as the characterization of their mode of action and the assessment of potential risks play an important role in order to obtain a safe and acceptable biological product. The development of a commercial production process, product formulation, and the requirements for the registration process are further critical items, which will determine over the commercial success of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28:169–185

    Article  CAS  PubMed  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Bertschinger HU, Fairbrother JM (1999) Escherichia coli infections. In: Straw BE, D'Allaire S, Mengeling WL, Taylor DJ (eds) Diseases of swine, 8th edn. Iowa State University Press, Ames, IA, pp 431–467

    Google Scholar 

  • Blaut M, Collins MD, Welling GW, Dore J, van Loo J, de Vos W (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 87:S203–S211

    Article  Google Scholar 

  • Börner H (1990) Pflanzenkrankheiten und Pflanzenschutz, 6th edn. Eugen Ulmer GmbH&Co, Stuttgart, p 518

    Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant associated bacteria. Microbiol Mol Biol Rev 69(1):155–194

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69:1052S–11057S

    CAS  PubMed  Google Scholar 

  • Commission E (2005) Opinion on the scientific panel on additives and products or substances used in animal feed on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. EFSA J 223:1–12

    Google Scholar 

  • de Bertoldi M (2010) Production and utilization of suppressive composts: environmental, food and health benefits. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 153–170

    Google Scholar 

  • Deprez P, Van den Hende C, Muylle E, Oyaert W (1986) The influence of the administration of sow’s milk on the post-weaning excretion of hemolytic E. coli in the pig. Vet Res Commun 10:469–478

    Article  CAS  PubMed  Google Scholar 

  • Dunne C, Murphy L, Flynn S, O'Mahony L, O'Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, Kiely B, Quigley EM, O'Sullivan G, Shanahan F, Collins J (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 76:279–292

    Article  CAS  PubMed  Google Scholar 

  • Erickson KL, Hubbard NE (2000) Probiotic immunomodulation in health and disease. J Nutr 130:403–409

    Google Scholar 

  • European Commission (1994) Commission Directive 94/40/EC of 22 July 1994 amending Council Directive 87/153/EEC fixing guidelines for the assessment of additives in animal nutrition, pp 15–19

    Google Scholar 

  • European Commission (2003) Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition, pp 29–43

    Google Scholar 

  • European Commission (2008) Monitoring of pesticides residues in products of plant origin in the European Union, Norway, Iceland and Liechtenstein 2006. Commission Staff Working Document SEC(2008) 2902

    Google Scholar 

  • Filutowicz M, Burgess R, Gamelli RL, Heinemann JA, Kurenbach B, Rakowsky SA, Shankar R (2008) Bacterial conjugation-based antimicrobial agents. Plasmid 60:38–64

    Article  CAS  PubMed  Google Scholar 

  • Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Fuchs JG (2010) Interactions between beneficial and harmful micro-organisms: from the composting process to compost application. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 213–230

    Google Scholar 

  • Gerhardtson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20(8):338–343

    Article  Google Scholar 

  • Gisi U (1990) Bodenökologie. Ulrich Thieme Verlag, Stuttgart ISBN 3-13-747201-6

    Google Scholar 

  • Grendene A, Marciano P (1999) Interaction between Sclerotinia sclerotiorum and Coniothyrium minitans strains with different aggressiveness. Phytoparasitica 27(3):201–206

    Article  Google Scholar 

  • Gullino ML, Leroux P, Smith CM (2000) Uses and challenges of novel compounds for plant disease control. Crop Prot 19:1–11

    Article  CAS  Google Scholar 

  • Hillman K, Murdoch T, Spencer R, Stewart CS (1994) Inhibition of enterotoxigenic Escherichia coli by the microflora of the porcine ileum, in an in vitro semicontinuous culture system. J Appl Bacteriol 76:294–300

    CAS  PubMed  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Hossain M, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17–2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

    Article  CAS  PubMed  Google Scholar 

  • Ippolito A, El Ghaouth A, Wilson CL, Wisniewsky M (2000) Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol Technol 19:265–272

    Article  CAS  Google Scholar 

  • Joelli D (2005) Bestimmung von Effizienzkriterien für ausgewählte probiotische Stämme zur Verwendung in der Geflügelproduktion. Diploma Thesis, BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Department Institute for Agrobiotechnology Tulln, Austria, pp 1–110

    Google Scholar 

  • Johnson KB, Stockwell VO (2000) Biological control of fire blight. In: Vanneste JL (ed) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI, Wallingford, pp 319–337

    Chapter  Google Scholar 

  • Juven BJ, Meinersmann RJ, Meinersmann RJ (1991) Antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human enteropathogens in live poultry. J Appl Bacteriol 70(2):95–103

    CAS  PubMed  Google Scholar 

  • Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 167:185–189

    Article  CAS  PubMed  Google Scholar 

  • Klose V, Mohnl M, Plail R, Schatzmayr G, Loibner A (2006) Development of a competitive exclusion product for poultry meeting the regulatory requirements for registration in the European Union. Mol Nutr Food Res 50:563–571

    Article  CAS  PubMed  Google Scholar 

  • Kretschmer M, Walker A-S, Leroch M, Schoonbeck H-J, Fillinger S, Hahn M (2008) Vermehrtes Auftreten von Multidrug Resistenz (MDR) bei Botrytis cinerea Isolaten in Weinbergen der Champagne und entlang der deutschen Weinstraße. In: Bundesforschungsinstitut für Kulturpflanzen (JKI) (ed.): 56. Deutsche Pflanzenschutztagung, 22–25 September 2008, Kiel, Germany

    Google Scholar 

  • Krieg A, Franz JM (1989) Lehrbuch der biologischen Schädlingsbekämpfung. Paul Parey Verlag, Berlin, Hamburg

    Google Scholar 

  • Kunz S (2006) Fire blight control in organic fruit growing – systematic investigation of the mode of action of potential control agents. Mitt Biol Bundesanst Land- Forstwirtsch 408:249–253

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883

    Article  CAS  PubMed  Google Scholar 

  • Liu G (1939) Some extracts from the history of entomology in China. Psyche 46(1):23–28. doi:10.1155/1939/74632

    Article  Google Scholar 

  • Luongo L, Galli M, Corazza L, Meekes E, De Haas L, Van Der Plas CL, Köhl J (2005) Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Sci Technol 15(3):229–242

    Article  Google Scholar 

  • Mohnl M, Berchiere A, Klimitsch A, Klose V, Plail R, Schatzmayr G (2006) Development of a competitive exclusion product with defined cultures and its efficacy on reduction of S. Enteritidis in broiler. In: CD ROM Proceedings XII European Poultry Conference, Verona, Italy, 10–14 September 2006

    Google Scholar 

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moosbeckhofer R, Loncaric I, Oberlerchner J, Persen U, Ertl C, Donat C (2008) Use of honeybees (Apis mellifera) as vectors for fire blight antagonists in field experiments. Acta Hortic (ISHS) 793:461–464

    Google Scholar 

  • Moughan P, Birtles M, Cranwell P, Smith W, Pedraza M (1992) The piglets as a model animal for studying aspects of digestion in milk-fed human infants. In: Sinopoulos AP (ed) Nutritional triggers for health and in disease. Karger, Basel, pp 40–113

    Google Scholar 

  • Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci 86:309–317

    CAS  PubMed  Google Scholar 

  • Nabuurs MJ (1998) Weaning piglets as a model for studying pathophysiology of diarrhea. Vet Q 20:42–45

    Google Scholar 

  • Nurmi E, Rantala M (1973) New aspects of Salmonella infection in broiler production. Nature 241:210–211

    Article  CAS  PubMed  Google Scholar 

  • Nurmi E, Nuotio L, Schneitz C (1992) The competitive exclusion concept: development and future. Int J Food Microbiol 15:237–240

    Article  CAS  PubMed  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, CA

    Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  CAS  PubMed  Google Scholar 

  • Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396–402

    Google Scholar 

  • Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G (1998) Demonstration of safety of probiotics – a review. Int J Food Microbiol 44:93–106

    Article  CAS  PubMed  Google Scholar 

  • Sanders ME, Huis in't Veld J (1999) Bringing a probiotic-containing functional food to the market: microbiological, product, regulatory and labeling issues. Antonie Van Leeuwenhoek 76:293–315

    Article  CAS  PubMed  Google Scholar 

  • Savage DC (1981) The effect of stress, diet and environment on the stability of the gastrointestinal microflora. Fortschr Veterinarmed [Adv Vet Med] 33:23–31

    Google Scholar 

  • Schubert M, Fink S, Schwarze FWMR (2008) Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biol Control 45:111–123

    Article  Google Scholar 

  • Taylor DE (2005) Swine dysentery, spirochaetal diarrhoea. In: Taylor DJ (ed) Pig diseases. St Edmundsbury Press, Bury St Edmund's, Suffolk, UK, pp 119–128

    Google Scholar 

  • Temple TN, Stockwell VO, Johnson KB, Loper JE (2006) Bioavailability of iron to Pseudomonas fluorescens strain A506 on flowers of pear. Acta Hortic (ISHS) 704:301–306

    CAS  Google Scholar 

  • Timmerman HM, Koning CJM, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain and multispecies probiotics – a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233

    Article  CAS  PubMed  Google Scholar 

  • Timms-Wilson TM, Griffiths RI, Whiteley AS, Prosser JI, Bailey MJ (2007) Detection of active bacterial populations in soil. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil Microbiology, 2nd edn. CRC, Boca Raton, pp 387–407

    Google Scholar 

  • Trione EJ, Stockwell VO (1989) Development of detached wheat spikelets in culture. Plant Cell Tissue Organ Cult 17:161–170

    Article  Google Scholar 

  • van den Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics: links between animals and humans. Int J Antimicrob Agents 14:327–335

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Wandmacher S (1996) Untersuchung der Wirkungsmechanismen mikrobieller Antagonisten bei der biologischen Bekämpfung der Lagerfäule bei Äpfel. Diploma Thesis, University of Konstanz, pp 1–98

    Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    Article  CAS  PubMed  Google Scholar 

  • Xuan ZN, Kim JD, Heo KN, Jung HJ, Lee JH, Han YK, Kim YY, Han IK (2001) Study on the development of a probiotics complex for weaned pigs. Asian-australas J Anim Sci 14:1425–1428

    CAS  Google Scholar 

  • Yang C-H, Crowley DE, Borneman J, Keen NT (2001) Microbial phylosphere populations are more complex than previously realized. Proc Natl Acad Sci USA 98:3889–3894

    Article  CAS  PubMed  Google Scholar 

  • Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Parts of this work were supported by a grant from the European Commission (QLK-CT-2002-71662, C-EX, 5th Framework).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Klose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klose, V., Neureiter, M., Mohnl, M., Danner, H., Donat, C. (2010). Microbial Antagonists in Animal Health Promotion and Plant Protection. In: Insam, H., Franke-Whittle, I., Goberna, M. (eds) Microbes at Work. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04043-6_10

Download citation

Publish with us

Policies and ethics