Skip to main content

Exploiting Data Missingness in Bayesian Network Modeling

  • Conference paper
Advances in Intelligent Data Analysis VIII (IDA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5772))

Included in the following conference series:

Abstract

This paper proposes a framework built on the use of Bayesian networks (BN) for representing statistical dependencies between the existing random variables and additional dummy boolean variables, which represent the presence/absence of the respective random variable value. We show how augmenting the BN with these additional variables helps pinpoint the mechanism through which missing data contributes to the classification task. The missing data mechanism is thus explicitly taken into account to predict the class variable using the data at hand. Extensive experiments on synthetic and real-world incomplete data sets reveals that the missingness information improves classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Little, R., Rubin, D.: Statistical analysis with missing data. Wiley Interscience, Hoboken (2002)

    Book  MATH  Google Scholar 

  2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Lin, J., Haug, P.: Exploiting missing clinical data in Bayesian network modeling for predicting medical problems. Journal of Biomedical Informatics 41, 1–14 (2008)

    Article  Google Scholar 

  4. Siddique, J., Belin, T.: Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data. Computational Statistics & Date Analysis 53, 405–415 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Saar-Tsechansky, M., Provost, F.: Handling missing values when applying classification models. Journal of Machine Learning Research 8, 1625–1657 (2007)

    MATH  Google Scholar 

  6. Farhangfara, A., Kurganb, L., Dyc, J.: Impact of imputation of missing values on classification error for discrete data. Pattern Recognition 41, 3692–3705 (2008)

    Article  Google Scholar 

  7. Corani, G., Zaffalon, M.: Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2. Journal of Machine Learning Research 9, 581–621 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Jamshidian, M., Mata, M.: Postmodeling sensitivity analysis to detect the effect of missing data mechanisms. Multivariate Behavioral Research 43, 432–452 (2008)

    Article  Google Scholar 

  9. Ramoni, M., Sebastiani, P.: Robust learning with missing data. Machine Learning 45(2), 147–170 (2001)

    Article  MATH  Google Scholar 

  10. Aussem, A., Rodrigues de Morais, S.: A conservative feature selection algorithm with missing data. In: IEEE International Conference on Data Mining ICDM 2008, Pisa, Italy, pp. 725–730 (2008)

    Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  12. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs (2004)

    Google Scholar 

  13. Peña, J., Nilsson, R., Björkegren, J., Tegnér, J.: Towards scalable and data efficient learning of Markov boundaries. International Journal of Approximate Reasoning 45(2), 211–232 (2007)

    Article  MATH  Google Scholar 

  14. Rodrigues de Morais, S., Aussem, A.: A novel scalable and data efficient feature subset selection algorithm. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 298–312. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Tsamardinos, I., Brown, L., Aliferis, C.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

    Article  Google Scholar 

  16. Yaramakala, S., Margaritis, D.: Speculative Markov blanket discovery for optimal feature selection. In: IEEE International Conference on Data Mining, pp. 809–812 (2005)

    Google Scholar 

  17. Myers, J., Laskey, K., Levitt, T.: Learning Bayesian networks from incomplete data with stochastic search algorithms. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, UAI 1995 (1995)

    Google Scholar 

  18. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  19. Peña, J.M., Björkegren, J., Tegnér, J.: Growing Bayesian network models of gene networks from seed genes. Bioinformatics 40, 224–229 (2005)

    Google Scholar 

  20. Whittaker, J.: Graphical Models in Applied Multivariate Analysis. Wiley, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodrigues de Morais, S., Aussem, A. (2009). Exploiting Data Missingness in Bayesian Network Modeling. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, JF. (eds) Advances in Intelligent Data Analysis VIII. IDA 2009. Lecture Notes in Computer Science, vol 5772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03915-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03915-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03914-0

  • Online ISBN: 978-3-642-03915-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics