Skip to main content

Stochastic Games with Finitary Objectives

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

The synthesis of a reactive system with respect to an ω-regular specification requires the solution of a graph game. Such games have been extended in two natural ways. First, a game graph can be equipped with probabilistic choices between alternative transitions, thus allowing the modeling of uncertain behavior. These are called stochastic games. Second, a liveness specification can be strengthened to require satisfaction within an unknown but bounded amount of time. These are called finitary objectives. We study, for the first time, the combination of stochastic games and finitary objectives. We characterize the requirements on optimal strategies and provide algorithms for computing the maximal achievable probability of winning stochastic games with finitary parity or Streett objectives. Most notably, the set of states from which a player can win with probability 1 for a finitary parity objective can be computed in polynomial time, even though no polynomial-time algorithm is known in the nonfinitary case.

This research was supported in part by the Swiss National Science Foundation under the Indo-Swiss Joint Research Programme, by the European Network of Excellence on Embedded Systems Design (ArtistDesign), and by the European project Combest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, T.A.: Finitary fairness. In: LICS 1994, pp. 52–61. IEEE, Los Alamitos (1994)

    Google Scholar 

  2. Chatterjee, K.: Concurrent games with tail objectives. Theoretical Computer Science 388, 181–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochastic Rabin and Streett games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878–890. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Chatterjee, K., Henzinger, T.A.: Finitary winning in ω-regular games. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 257–271. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games. Technical Report: UCB/EECS-2007-120 (2007)

    Google Scholar 

  6. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 121–130. SIAM, Philadelphia (2004)

    Google Scholar 

  7. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS 2000, pp. 141–154. IEEE, Los Alamitos (2000)

    Google Scholar 

  8. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: LICS 1997, pp. 99–110. IEEE, Los Alamitos (1997)

    Google Scholar 

  9. Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: FOCS 1988, pp. 328–337. IEEE, Los Alamitos (1988)

    Google Scholar 

  10. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC 1982, pp. 60–65. ACM Press, New York (1982)

    Google Scholar 

  11. Horn, F.: Dicing on the streett. IPL 104, 1–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horn, F.: Faster algorithms for finitary games. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 472–484. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Horn, F.: Random Games. PhD thesis, Université Denis-Diderot and RWTH, Aachen (2008)

    Google Scholar 

  14. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic Logic 63(4), 1565–1581 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Piterman, N., Pnueli, A.: Faster solution of Rabin and Streett games. In: LICS 2006, pp. 275–284. IEEE, Los Alamitos (2006)

    Google Scholar 

  17. Zielonka, W.: Perfect-information stochastic parity games. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 499–513. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Henzinger, T.A., Horn, F. (2009). Stochastic Games with Finitary Objectives. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics