Skip to main content

A Dichotomy Theorem for Polynomial Evaluation

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

A dichotomy theorem for counting problems due to Creignou and Hermann states that or any finite set S of logical relations, the counting problem #SAT(S) is either in FP, or #P-complete. In the present paper we show a dichotomy theorem for polynomial evaluation. That is, we show that for a given set S, either there exists a VNP-complete family of polynomials associated to S, or the associated families of polynomials are all in VP. We give a concise characterization of the sets S that give rise to “easy” and “hard” polynomials. We also prove that several problems which were known to be # P-complete under Turing reductions only are in fact # P-complete under many-one reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bürgisser, P.: On the structure of Valiant’s complexity classes. Discrete Mathematics and Theoretical Computer Science 3, 73–94 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  3. Briquel, I., Koiran, P.: A dichotomy theorem for polynomial evaluation, http://prunel.ccsd.cnrs.fr/ensl-00360974

  4. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125, 1–12 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Creignou, N., Khanna, S., Sudan, M.: Complexity classification of boolean constraint satisfaction problems. SIAM monographs on discrete mathematics (2001)

    Google Scholar 

  7. Dong, F.M., Hendy, M.D., Teo, K.L., Little, C.H.C.: The vertex-cover polynomial of a graph. Discrete Mathematics 250(1-3), 71–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jerrum, M.: Two-dimensional monomer-dimer systems are computationally intractable. Journal of Statistical Physics 48, 121–134 (1987)

    Article  MathSciNet  Google Scholar 

  9. Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Lectures in Mathematics - ETH Zürich. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  10. Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM Journal of Algebraic and Discrete Methods 7(2), 331–335 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lotz, M., Makowsky, J.A.: On the algebraic complexity of some families of coloured Tutte polynomials. Advances in Applied Mathematics 32(1), 327–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. of Comp. 12(4), 777–788 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schaefer, T.J.: The complexity of satisfiability problems. In: Conference Record of the 10th Symposium on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  14. Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM Symposium on Theory of Computing, pp. 249–261 (1979)

    Google Scholar 

  15. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal of Computing 8(3), 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zankó, V.: #P-completeness via many-one reductions. International Journal of Foundations of Computer Science 2(1), 77–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Briquel, I., Koiran, P. (2009). A Dichotomy Theorem for Polynomial Evaluation. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics