Skip to main content

The U.S. radium dial painters of the 1920s comprised an early cohort of several thousand workers at increased risk of developing radiation induced cancers. Since the last year of World War II, there have been a variety of other nuclear events, including A-bombs dropped on Hiroshima and Nagasaki in 1945, thousands of underground, underwater, surface, and airborne nuclear weapon tests at various sites throughout the world, gross radioactive contamination of the Russian Mayak nuclear site and associated exposure of residents along the Techa River, the eastern Urals nuclear waste tank explosion in 1957, the Chernobyl nuclear reactor accident in 1986 in the Ukraine, and Taiwan residential buildings contaminated with 60Co. All these activities resulted in exposure of large human populations to low doses of ionizing radiation. These populations have been extensively studied in a myriad of epidemio-logical studies, none of which show increased cancer mortality at low doses, but instead show benefits with less than expected risks from low-dose radiation exposures (Table 4.1) [1–7].

The precautionary principle, an offspring of the LNT, leads to unacceptable societal penalties, as demonstrated in the aftermath of the Chernobyl catastrophe [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaworowski Z (2006) Chernobyl: the fear of the unknown. Atomic Insight Guest Column. Available at http://www.atomicinsights.com/Guests/AGC_05-02-06.html

  2. Jaworowski Z (1999) Radiation risks and ethics. Phys Today 52:24–29

    Article  CAS  Google Scholar 

  3. Jaworowski Z (1998) Radiation risks in the 20th century: reality, illusions and ethics. Exec Intell Rev 25:15–19

    Google Scholar 

  4. Goldman M (1982) Ionizing radiation and its risks. West J Med 137:540–547

    CAS  PubMed  Google Scholar 

  5. Goldman M, Filjushkin IV (1994) Low level radiation risks in people. Chin Med J 107:624–626

    CAS  PubMed  Google Scholar 

  6. Anspaugh LR, Catlin RJ, Goldman M (1988) The global impact of the Chernobyl reactor accident. Science 242:1513–1519

    Article  CAS  PubMed  Google Scholar 

  7. Goldman M (1987) Chernobyl: a radiological perspective. Science 238:622–623

    Article  CAS  PubMed  Google Scholar 

  8. Rowland RE (1994) Radium in humans: a review of U. S. studies. Argonne National Laboratory, Argonne IL

    Google Scholar 

  9. Rowlands RE, Stheney AF, Lucas HF (1983) Dose-response relationships for radium-induced bone sarcomas. Health Phys 44(S1):15–31

    Google Scholar 

  10. Rowland RE (1997) Bone sarcoma in humans induced by radium: a threshold response? In: Radioprotection colloques, Proceedings of the Twenty-Seventh Annual Meeting of the European Society for Radiation Biology 32:C1/331–C1/338

    Google Scholar 

  11. Thomas RG (1994) The US radium luminisers: a case for a policy ‘below regulatory concern’. J Radiat Prot 14:141–153

    Article  Google Scholar 

  12. Evans RD (1974) Radium in man. Health Phys 27:497–510

    Article  Google Scholar 

  13. Baverstock KF, Papworth D (1989) The UK radium luminizer survey. Br J Radiol 21:72–76

    Google Scholar 

  14. Stehney AF (1994) Survival times of pre-1950 U.S. women radium dial workers. In: Proceedings of the International Seminar Health effects of internally deposited radionuclides: emphasis on radium and thorium, Heidelberg, Germany, pp 149–155

    Google Scholar 

  15. Mays CW, Spiess H, Gerspach A (1978) Skeletal effects following 224Ra injections into humans. Health Phys 35:83–90

    Article  CAS  PubMed  Google Scholar 

  16. Raabe OG, Rosenblatt LS, Schlenker RA (1990) Interspecies scaling of risk for radium-induced bone cancer. Int J Radiat Biol 57:1047–1061

    Article  CAS  PubMed  Google Scholar 

  17. Thorne MC (2003) Background radiation: natural and man-made. J Radiol Prot 23:29–42

    Article  CAS  PubMed  Google Scholar 

  18. Muirhead CR, Bingham D, Haylock RGE et al (2003) Follow up of mortality and incidence of cancer 1952–98 in men from the UK who participated in the UK's atmospheric nuclear weapon tests and experimental programmes. Occup Environ Med 60:165–172

    Article  CAS  PubMed  Google Scholar 

  19. DTRA (2003) Radiation exposure is US atmospheric nuclear weapons testing. Nuclear Test Personnel Review Programme Defence Threat Reduction Agency Web Site: http://www.dtra. mil/news/fact/nw_ntprpre.html

  20. Muirhead CR, Kendall GM, Darby SC et al (2004) Epidemiological studies of UK test veterans: II. Mortality and cancer incidence. J Radiol Prot 24:219–241

    CAS  Google Scholar 

  21. Imanaka T, Fukutani S, Yamamoto M et al (2005) External dose assessment for Dolon village due to fallouts from the semipalatinsk nuclear test site. In: Proceedings of the 48th Annual Meeting of the Japan Radiation Research Society/the First Asian Congress of Radiation Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan. Abstract W2–5, p 104

    Google Scholar 

  22. Bauer S, Gusev BI, Pivina LM et al (2005) Radiation exposure due to local fallout from Soviet atmospheric nuclear weapons testing in Kazakhstan: solid cancer mortality in the Semipalatinsk historical cohort, 1960–1999. Radiat Res 164:409–419

    Article  CAS  PubMed  Google Scholar 

  23. Goldman M (1997) The Russian radiation legacy: its integrated impact and lessons. Environ Health Perspect 105(Suppl 6):1385–1391

    Article  PubMed  Google Scholar 

  24. Kossenko MM (1996) Cancer mortality among Techa river residents and their offspring. Health Phys 71:77–82

    Article  CAS  PubMed  Google Scholar 

  25. Kostyuchenko VA, Krestina L Yu (1994) Long-term irradiation effects in the population evacuated from the East-Urals radioactive trace area. Sci Total Environ 142:19–125

    Article  Google Scholar 

  26. Heidenreich W, Paretzke H, Jacob P (1997) No evidence for increased tumor rates below 200 mSv in the atomic bomb survivors data. Radiat Environ Biophys 36:205–207

    Article  CAS  PubMed  Google Scholar 

  27. Kellerer AM, Nekolla E (1997) Neutrons versus gamma ray risk estimates: inferences from the cancer incidence and mortality data in Hiroshima. Radiat Enviorn Biophys 36:73–83

    Article  CAS  Google Scholar 

  28. Anderson RE, Key CR, Yamamoto T, Thorslund T (1974) Aging in Hiroshima and Nagasaki atomic bomb survivors. Am J Path 75:1–12

    CAS  PubMed  Google Scholar 

  29. Cologne JB, Preston DL (2000) Longevity of atomic bomb survivors. Lancet 356:303–307

    Article  CAS  PubMed  Google Scholar 

  30. Mine M, Okumura Y, Ichimaru M et al (1990) Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human lifespan. Int J Radiat Biol 58:1035–1043

    Article  CAS  PubMed  Google Scholar 

  31. Okajima S, Mine M, Nakamura T (1985) Mortality of registered A-bomb survivors in Nagasaki, Japan, 1970–1984. Radiat Res 103:419–431

    Article  CAS  PubMed  Google Scholar 

  32. Fujiwara S, Suyama A, Cologne JB et al (2008) Prevalence of adult-onset multifactorial disease among offspring of atomic bomb survivors. Radiat Res 170:451–457

    Article  CAS  PubMed  Google Scholar 

  33. Damilakis J (2004) Pregnancy and diagnostic X-rays. Eur Radiol Syllabus 14:33–39

    Article  Google Scholar 

  34. Pierce DA, Shimizu Y, Preston DL et al (1996) Studies of the mortality of atomic bomb survivors. Report 12, Part 1. Cancer: 1950–1990. Radiat Res 146:1–27

    Article  CAS  PubMed  Google Scholar 

  35. Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154:178–186

    Article  CAS  PubMed  Google Scholar 

  36. Little MP, Muirhead CR (1997) Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors. Int J Radiat Biol 70:83–94

    Article  Google Scholar 

  37. Hwang S-L, Guo H-R, Hsieh W-A et al (2006) Cancer risks in a population with prolonged low dose-rate γ-radiation exposure in radio-contaminated buildings, 1983–2002. Int J Radiat Biol 82:849–858

    Article  CAS  PubMed  Google Scholar 

  38. Chen WL, Luan YC, Shieh MC et al (2007) Effects of cobalt-60 exposure on health of Taiwan residents suggest new approach needed in radiation protection. Dose Response 5:63–75

    Article  CAS  Google Scholar 

  39. Chen WL, Luan YC, Shieh MC et al (2004) Is chronic radiation an effective prophylaxis against cancer? J Am Physicians Surg 9:6–10

    Google Scholar 

  40. Hwang S-L et al (2008) Estimates of relative risks for cancers in a population after prolonged low-dose-rate radiation exposure: a follow-up assessment from 1983 to 2005. Radiat Res 170:143–148

    Article  CAS  PubMed  Google Scholar 

  41. Baverstock K, Williams D (2002) Chernobyl: an overlooked aspect? Science 299:44

    Article  Google Scholar 

  42. Cigna AA, Durante M (2006) Radiation risks in normal and emergency situations. Springer, Dordrecht, The Netherlands, pp 49–67

    Google Scholar 

  43. World Health Organization (WHO) (2006) Health effects of the Chernobyl accident and special health care programmes. Report of the UN Chernobyl Forum expert group “health”. Geneva, Switzerland

    Google Scholar 

  44. Igumnov SA (2007) Mental and behavioral disorders in Belarusian persons exposed in utero to radiation following the Chernobyl accident. In: Sixht LOWRAD Conference, Budapest, Hungary. Abstract, p 62

    Google Scholar 

  45. Pennsylvania past and present: Pennsylvania maturity, (1945–2003) The Pennsylvania manual, section 1. Pennsylvania Department of General Services, Harrisburg, PA

    Google Scholar 

  46. Nuclear Regulatory Commission (2005) Fact sheet on the accident at Three Mile Island. Nuclear Regulatory Commission, Revised. http://www.nrc.gov/reading-rm/doc-collections/ fact-sheets/3mile-isle.html

  47. Balonov M (2007) Third annual Warren K. Sinclair keynote address: retrospective analysis of impacts of the Chernobyl accident. Health Phys 93:383–409

    Article  CAS  PubMed  Google Scholar 

  48. Howe GR (2007) Leukemia following the Chernobyl accident. Health Phys 93:512–515

    Article  CAS  PubMed  Google Scholar 

  49. UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. 2000 report to the general assembly, with annexes. Annex J, Volume II. United Nations, New York, pp 451–566

    Google Scholar 

  50. Ivanov VK (2007) Late cancer and non-cancer risks among Chernobyl emergency workers of Russia. Health Phys 93:470–479

    Article  CAS  PubMed  Google Scholar 

  51. Cardis E, Anspaugh L, Ivanov VK et al (1996) Estimated long term health effects of the Chernobyl accident. One decade after Chernobyl: summing up the consequences of the accident. International Atomic energy Agency, Vienna, pp 241–279

    Google Scholar 

  52. Rahu M, Tekkel M, Veidebaum T et al (1997) The Estonian study of Chernobyl cleanup workers II. Incidence of cancer and mortality. Radiat Res 147:641–652

    Article  PubMed  Google Scholar 

  53. Ivanov V, Iiyin L, Gorski A et al (2004) Radiation and epidemiological analysis for solid cancer incidence among nuclear workers who participated in recovery operations following the accident at the Chernobyl NPP. J Radiat Res (Tokyo) 45:41–44

    Article  Google Scholar 

  54. Ivanov VK, Gorski AI, Maksioutov MA et al (2001) Mortality among the Chernobyl emergency workers: estimation of radiation risks (preliminary analysis). Health Phys 81:514–521

    Article  CAS  PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Accidents, Tests, and Incidents. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics