Skip to main content

Abstract

In the following, we describe an explicit discontinuous Galerkin scheme for the compressible Navier-Stokes equations. The scheme is of arbitrary order of accuracy by choosing the polynomial degree of the approximation. It is kept very local so that the solution in each cell only depends on the von Neumann neighbors. Apart from the standard DG framework the computational efficiency is increased by the use of a mixed approach using a modal and a nodal set of basis functions. For the approximation of the viscous fluxes an approximation based on local Riemann solutions is used. At the end we show a high order approximation of the unsteady laminar flow over a NACA0012 profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138(2), 251–285 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids 40, 197–207 (2002)

    Article  MATH  Google Scholar 

  4. Dumbser, M., Munz, C.-D.: Arbitrary High Order Discontinuous Galerkin Schemes. In: Cordier, S., Goudon, T., Gutnic, M., Sonnendrücker, E. (eds.) Numerical Methods for Hyperbolic and Kinetic Problems. IRMA Series in Mathematics and Theoretical Physics, pp. 295–333. EMS Publishing House (2005)

    Google Scholar 

  5. Dumbser, M., Munz, C.-D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. Journal of Scientific Computing 27(1-3), 215–230 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gassner, G.: Discontinuous Galerkin Methods for the Unsteady Compressible Navier–Stokes Equations. Dissertation, University of Stuttgart (2009)

    Google Scholar 

  7. Gassner, G., Lörcher, F., Dumbser, M., Munz, C.-D.: Explicit Space-Time Discontinuous Galerkin Schemes for Advection Diffusion Equations. In: 35th CFD/ADIGMA course on very high order discretization methods, VKI LS 2008-08 (2008)

    Google Scholar 

  8. Gassner, G., Lörcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224(2), 1049–1063 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34(3), 260–286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gassner, G., Lörcher, F., Munz, C.-D., Hesthaven, J.S.: Polymorphic nodal elements and their application in discontinuous Galerkin methods. J. Comput. Phys. 228(5), 1573–1590 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: Method formulation. Int. J. Num. Anal. Model. 3(1), 1–20 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211(2), 492–512 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lörcher, F.: Predictor-Corrector Discontinuous Galerkin Schemes for the Numerical Solution of the Compressible Navier–Stokes Equations in Complex Domains. Dissertation, University of Stuttgart (2009)

    Google Scholar 

  15. Lörcher, F., Gassner, G., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32(2), 175–199 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lörcher, F., Munz, C.-D.: Lax–Wendroff–type schemes of arbitrary order in several space dimensions. IMA J. Num. Anal. 27, 593–615 (2007)

    Article  MATH  Google Scholar 

  17. Luo, H., Baum, J.D., Lohner, R.: On the computation of steady-state compressible flows using a discontinuous Galerkin method. International Journal for Numerical Methods in Engineering 73(5), 597–623 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Qiu, J., Khoo, B.C., Shu, C.-W.: A numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys. 212, 510–565 (2006)

    Article  MathSciNet  Google Scholar 

  19. Titarev, V.A., Toro, E.F.: ADER: Arbitrary high order Godunov approach. Journal of Scientific Computing 17(1-4), 609–618 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  21. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 458(2018), 271–281 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taube, A., Gassner, G., Munz, CD. (2010). Explicit One-Step Discontinuous Galerkin Schemes for Unsteady Flow Simulations. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sørensen, K. (eds) ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03707-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03707-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03706-1

  • Online ISBN: 978-3-642-03707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics