Skip to main content

Algorithms for Energy Saving

  • Chapter
Efficient Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5760))

Abstract

Energy has become a scarce and expensive resource. There is a growing awareness in society that energy saving is a critical issue. This paper surveys algorithmic solutions to reduce energy consumption in computing environments. We focus on the system and device level. More specifically, we study power-down mechanisms as well as dynamic speed scaling techniques in modern microprocessors.

An extended and modified version of this survey, aiming at a different audience, will appear in the Communications of the ACM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.microsoft.com/whdc/system/pnppwr/powermgmt/default.mspx

  2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Transactions on Algorithms 3 (2007)

    Google Scholar 

  3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proc. 19th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 289–298 (2007)

    Google Scholar 

  4. Augustine, J., Irani, S., Swamy, C.: Optimal power-down strategies. SIAM Journal on Computing 37, 1499–1516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 240–251. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for speed bounded processors. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 409–420. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. In: Proc. 20th ACM-SIAM Symposium on Discrete Algorithm, pp. 693–701 (2009)

    Google Scholar 

  8. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. Journal of the ACM 54 (2007)

    Google Scholar 

  9. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 805–813 (2007)

    Google Scholar 

  10. Baptiste, P., Chrobak, M., Dürr, C.: Polynomial time algorithms for minimum energy scheduling. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 136–150. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Barroso, L.A.: The price of performance. ACM Queue 3 (2005)

    Google Scholar 

  12. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proc. 18th Annual ACM Symposiun on Parallel Algorithms and Architectures, pp. 190–196 (2006)

    Google Scholar 

  13. Chan, H.-L., Chan, W.-T., Lam, T.-W., Lee, K.-L., Mak, K.-S., Wong, P.W.H.: Energy efficient online deadline scheduling. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 795–804 (2007)

    Google Scholar 

  14. Chan, H.-L., Edmonds, J., Lam, T.-W., Lee, L.-K., Marchetti-Spaccamela, A., Pruhs, K.: Nonclairvoyant speed scaling for flow and energy. In: Proc. 26th International Symposium on Theoretical Aspects of Computer Science, pp. 255–264 (2009)

    Google Scholar 

  15. Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadimoghaddam, M.: Scheduling to minimize gaps and power consumption. In: Proc. 19th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 46–54 (2007)

    Google Scholar 

  16. Irani, S., Karlin, A.R.: Online computation. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 521–564. PWS Publishing Company (1997)

    Google Scholar 

  17. Irani, S., Shukla, S.K., Gupta, R.K.: Online strategies for dynamic power management in systems with multiple power-saving states. ACM Transaction in Embedded Computing Systems 2, 325–346 (2003)

    Article  Google Scholar 

  18. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News 36, 63–76 (2005)

    Article  Google Scholar 

  19. Irani, S., Shukla, S.K., Gupta, R.: Algorithms for power savings. ACM Transactions on Algorithms 3 (2007)

    Google Scholar 

  20. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive randomized algorithms for nonuniform problems. Algorithmica 11, 542–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lam, T.-W., Lee, L.-K., To, I.K.K., Wong, P.W.H.: Energy efficient deadline scheduling in two processor systems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 476–487. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Competitive non-migratory scheduling for flow time and energy. In: Proc. 20th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 256–264 (2008)

    Google Scholar 

  23. Lam, T.-W., Lee, L.-K., To, I.K.K., Wong, P.W.H.: Speed scaling functions for flow time scheduling based on active job count. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 647–659. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks. Journal on Combintorial Optimization 11, 305–319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for variable voltage processors. Proc. National Academy of Sciences USA 103, 3983–3987 (2006)

    Article  Google Scholar 

  26. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM Journal on Computing 35, 658–671 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your erg. ACM Transactions on Algorithms 4 (2008)

    Google Scholar 

  28. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints. Theory of Computing Systems 43, 67–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communcations of the ACM 28, 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  30. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. 36th IEEE Symposium on Foundations of Computer Science, pp. 374–382 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albers, S. (2009). Algorithms for Energy Saving. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03456-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03455-8

  • Online ISBN: 978-3-642-03456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics