Skip to main content

The Influence of Jahn–Teller Coupling on the High-Spin/Low-Spin Equilibria of Octahedral MIIIL6 Polyhedra (MIII : Mn − Cu), with NiF6 3− as the Model Example

  • Chapter
  • First Online:
The Jahn-Teller Effect

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 97))

Abstract

The appearance of d4–to–d8 cations in their respective high- or low-spin ground states is not solely a matter of the interplay between the ligand field strength Δ and the Racah parameters of interelectronic repulsion B and C, but can be steered by additional Jahn–Teller (JT) coupling – as in the d4 and d7 cases, where vibronic Eg ⊗ εg interactions strongly stabilise a high- and low-spin ground state, respectively. Also in octahedral complexes with d5 and d6 cations JT interactions come into play, though only via the much weaker T2g ⊗ ε2g coupling – here contributing to the stabilisation of the low spin 2 T 2g and the high spin 5 T 2g state, respectively. Ni(III) occurs, with so far only one exception, as a low spin-species – in the fluoride case exclusively due to the large energy increment stemming from the tetragonal ground state JT splitting. It is further shown for NiF6 3-, adopting additionally to spectroscopic, magnetic and structural results, reliable data from DFT, that the minimum positions of the alternative \(_a^2 A_{1g} (_a^2 E_g ){\rm and }_a^2 A_{2g} (_a^2 T_{Ig} )\) ground state potential curves differ by only \(\Delta _{2,4} \cong 130cm^{ - 1}\). The energy barrier, on the other hand, which steers the transformation of low into high spin species with increasing temperature, amounts to about 400 cm-1. O- and N-ligator atoms, which induce larger Δ and smaller B and C values, considerably enhance the mentioned critical quantity Δ2,4. Interestingly enough, the distinct tetragonal polyhedron distortion, which accompanies the low spin ground state, vanishes in oxidic host lattices, as soon as oxygen serves as a bridging ligand in the respective structure. Band broadening, which suppresses JT coupling, and distinctly enhanced Ni_O bond covalency characterise the bonding in such phases – for example in the K2NiF4-type compound Nd0.8Sr1.2NiIIIO3.9 and in the perovskite LaNiO3, where even metallic conductivity is observed. CoIII possesses a high- to low-spin energy barrier to overcome interelectronic repulsion, which is similar to that for NiIII – but without the strong support by Eg g ⊗ εg JT coupling. Thus, CoF6 3- is high-spin, while oxygen-ligator atoms induce challenging high-spin/low-spin equilibria, which are discussed and analysed. The high-spin (5 E g)/low-spin (3T1g) separation energy for MnIII bears a different sign in comparison to NiIII, due to a larger spin-pairing energy and a pronounced JT coupling, which both favour the high spin ground state in this case. Accordingly, more covalent ligands, positioned higher in the spectrochemical series than fluoride and oxygen, are needed for the high- to-low-spin flip. The d8 configuration of CuIII, finally, represents a unique case in so far, as here the singlet-triplet separation energy can only be overcome via excessively tetragonally elongated octahedra. The effect behind is formally described as a pseudo-JT coupling in O h between the lowest energy excited \(_a^I E_g {\rm and }_a^I A_{1g}\) states, launching considerable lowering in energy of the \(_a^I A_{1g} {\rm and (}_a^I E_g )\) split state – the new ground state in D4h . Indeed, while the CuF6 3- octahedron is high-spin, the less ionic oxygen ligand usually induces a (nearly) square-planar CuIIIO4 coordination. The CuIII-O binding properties in various host lattices are characterised, and discussed in respect to the oxidic mixed-valence copper superconductors. Basis for the discussion in all cases are available structural, magnetic and spectroscopic (ligand field, EPR, XANES) data besides results from theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, Cambridge, 1971)

    Google Scholar 

  2. D. Reinen, M. Atanasov, P. Köhler, D. Babel, Coord. Chem. Reviews, to be published (2009)

    Google Scholar 

  3. U. Öpik, M.H.L. Pryce, Proc. R. Soc. London, Ser. A, 238, 425 (1957)

    Google Scholar 

  4. M. Atanasov, P. Comba, C.A. Daul, A. Hauser, J. Phys. Chem. 111, 9145 (2007)

    CAS  Google Scholar 

  5. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications (Wiley, New York, 2000)

    Google Scholar 

  6. C.K. Jorgensen, Struct. Bonding 1 (1966) 3, and in: Oxidation Numbers and Oxidation States, Springer 1969

    Google Scholar 

  7. D. Reinen, C. Friebel, V. Propach, Z. Anorg. Allg. Chem. 408, 187 (1974)

    Article  CAS  Google Scholar 

  8. E. Alter, R. Hoppe, Z. Anorg. Allg. Chem. 405, 167 (1974)

    Article  CAS  Google Scholar 

  9. D. Reinen, C. Friebel, Struct. Bonding 37, 1 (1979)

    CAS  Google Scholar 

  10. G.C. Allen, K.D. Warren, Struc. Bonding 9, 67 (1971)

    Google Scholar 

  11. J. Grannec, Ph. Sorbe, B. Chevalier, J. Etourneau, J. Portier, C. R. Acad. Sci., Paris 282C, 815 (1976)

    Google Scholar 

  12. D. Reinen, M. Atanasov, W. Massa, Z. Anorg. Allg. Chem. 632, 1375 (2006)

    Article  CAS  Google Scholar 

  13. I.B. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry (Plenum, New York, 1984) (with supplementing reference volume: The Jahn–Teller Effect – A Bibliographic Review

    Google Scholar 

  14. G. Blasse, J. Inorg. Nucl. Chem. 27, 2683 (1965)

    Article  CAS  Google Scholar 

  15. G. Demazeau, C. Parent, M. Pouchard, P. Hagenmüller, Mater. Res. Bull. 7, 913 (1972)

    Article  CAS  Google Scholar 

  16. G. Demazeau, M. Pouchard, M. Thomas, J.F. Colombet, J.C. Grenier, L. Fournès, J.L. Soubeyroux, P. Hagenmüller, Mater. Res. Bull. 15, 451 (1980)

    Article  CAS  Google Scholar 

  17. G. Demazeau, J.L. Marty, M. Pouchard, T. Rojo, J.M. Dance, P. Hagenmüller, Mater. Res. Bull. 16, 47 (1981)

    Article  CAS  Google Scholar 

  18. S. Abou-Warda, W. Pietzuch, G. Berghöfer, U. Kesper, W. Massa, D. Reinen, J. Solid State Chem. 138, 18 (1998)

    Article  CAS  Google Scholar 

  19. F. Abbatista, M. Vallino, Atti Acad. Sci. Torino 116, 89 (1982)

    Google Scholar 

  20. R.D. Shannon, C.T. Prewitt, Acta Cryst. B35, 925 (1969)

    Google Scholar 

  21. D. Reinen, M. Atanasov, S.-L. Lee, Coord. Chem. Reviews 175, 91 (1998)

    Article  CAS  Google Scholar 

  22. M. Atanasov, D. Reinen, Comprehensive Coord.Chem. II, Vol. I. Fundamentals, Chapter 1.36 (2003) 669, Elsevier, Ed. A.B.P. Lever

    Google Scholar 

  23. D. Reinen, Struct. Bonding 6, 30 (1969)

    Article  CAS  Google Scholar 

  24. D. Reinen, U. Kesper, D. Belder, J. Solid State Chem. 116, 355 (1995)

    Article  CAS  Google Scholar 

  25. Yu.V. Yablokov, T.A. Ivanova, S.Yu. Shipunova, N.V. Chezina, I.A. Zvereva, N.P. Bobrysheva, Appl. Magn. Reson. 2, 547 (1991)

    Article  CAS  Google Scholar 

  26. S. Angelov, C. Friebel, E. Zhechewa, R. Stoyanova, J. Phys. Chem. Solids 53, 443 (1992)

    Article  CAS  Google Scholar 

  27. M. Atanasov, D. Reinen, J. Electron Spectr. 86, 185 (1997)

    Article  CAS  Google Scholar 

  28. K.H. Höck, H. Nickisch, H. Thomas, Helv. Phys. Acta 56, 237 (1983)

    Google Scholar 

  29. Z. Hu, M.S. Golden, J. Fink, G. Kaindl, S.A. Warda, D. Reinen, P. Mahavedan, D.D. Sarma, Phys. Rev.B 61, 3739 (2000)

    Google Scholar 

  30. Z. Hu, G. Kaindl, A. Heyer, D. Reinen, Z. Anorg. Allg. Chem. 627, 2647 (2001)

    Article  CAS  Google Scholar 

  31. G. Demazeau, M. Pouchard, P. Hagenmüller, J. Solid State Chem. 18, 159 (1976)

    Article  CAS  Google Scholar 

  32. D. Reinen, A. Ozarowski, B. Jakob, J. Pebler, H. Stratemeier, K. Wieghardt, I. Tolksdorf, Inorg. Chem. 26, 1010 (1987)

    Article  Google Scholar 

  33. K. Wieghardt, W. Walz, B. Nuber, J. Weiss, A. Ozarowski, H. Stratemeier, D. Reinen, Inorg. Chem. 25, 1650 (1986)

    Article  CAS  Google Scholar 

  34. J.C. Brodovitch, R.I. Haines, A. McAuley, Can. J. Chem. 59 1610 (1981); D.H. Szalda, D.H. Macartney, N. Sutin, Inorg. Chem. 23, 3473 (1984)

    Google Scholar 

  35. D. Reinen, M. Atanasov, P. Köhler, J.Molec.Struct. 838, 151 (2007)

    Google Scholar 

  36. F.A. Cotton, M.D. Meyers, J. Am. Chem. Soc. 82, 5023 (1960)

    Article  CAS  Google Scholar 

  37. S.A. Warda, W. Massa, D. Reinen, Z. Hu, G. Kaindl, F.M.F. de Groot, J. Solid State Chem. 146, 79 (1999)

    Article  CAS  Google Scholar 

  38. G. Demazeau, Ph. Courbin, G. Le Flem, M. Pouchard, P. Hagenmüller, J.L. Soubeyroux, J.G. Main, G.A. Robins, Nouveau J. Chimie 3 171 (1979)

    CAS  Google Scholar 

  39. Z. Hu, Ch. Mazumdar, G. Kaindl, F.M.F. de Groot, S.A. Warda, D. Reinen, Chem. Phys. Letters 297, 321 (1998)

    Article  CAS  Google Scholar 

  40. M. Abbate, R.H. Potze, G.A. Sawatzky, A. Fujimuri, Phys. Rev. B49, 7210 (1994)

    Google Scholar 

  41. H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16, 1704 (1977)

    Article  Google Scholar 

  42. A.P.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984) and cited references

    Google Scholar 

  43. P. Köhler, W. Massa, D. Reinen, B. Hofman, R. Hoppe, Z. Anorg. Allg. Chem. 446, 131 (1978)

    Article  Google Scholar 

  44. Qu. Scheifele, T. Birk, J. Bendix, Ph. Tregenna-Piggott, H. Weihe, Angew. Chem. Int. Ed. 47, 148 (2008)

    Article  CAS  Google Scholar 

  45. C. Bellitto; A.A. Tomlinson, C. Furlani, J. Chem. Soc. (A) 3267 (1971)

    Google Scholar 

  46. I. Bernal, N. Elliot, R. Lalancette, Chem. Commun. 803 (1971)

    Google Scholar 

  47. Y. Adelsköld, L. Eriksson, P.L. Wang, P.E. Werner, Acta Crystallogr., Sect.C 44, 597 (1988)

    Google Scholar 

  48. P. Garcia-Fernandez, I.B. Bersuker, J.E. Boggs, J. Chem. Phys. 125, 104102 (2006)

    Article  CAS  Google Scholar 

  49. D. Reinen, M. Atanasov, G.St. Nikolov, F. Steffens, Inorg. Chem. 27, 1678 (1988)

    Google Scholar 

  50. H. Rieck, R. Hoppe, Z. Anorg. Allg. Chem. 392, 193 (1972)

    Article  CAS  Google Scholar 

  51. Z. Hu, G. Kaindl, S.A. Warda, D. Reinen, F.M.F. de Groot, B.G. Müller, Chem. Phys. 232, 63 (1998)

    Article  CAS  Google Scholar 

  52. J.B. Goodenough, G. Demazeau, M. Pouchard, P. Hagenmüller, J. Solid State Chem. 325, 8 (1973)

    Google Scholar 

  53. D. Reinen, J. Wegwerth, Physica C 183, 261 (1991)

    Article  CAS  Google Scholar 

  54. B. Grande, Hk. Müller-Buschbaum, M. Schweizer, Z. Anorg. Allg. Chem. 428, 120 (1977)

    Google Scholar 

  55. M.D. Kaplan, Physica C, 180, 351 (1991)

    Article  CAS  Google Scholar 

  56. K. Hestermann, R. Hoppe, Z. Anorg. Allg. Chem. 367, 249 and 261 (1969)

    Google Scholar 

  57. Hk. Müller-Buschbaum, Angew. Chem. 89, 704 (1977)

    Google Scholar 

  58. J.A. Duffy, Bonding, Energy Levels and Bands in Inorganic Solids (Longman, 1990), Chapter 5

    Google Scholar 

  59. St. Kremer, W. Henke, D. Reinen, Inorg. Chem. 21, 3013 (1982)

    Google Scholar 

  60. W. Henke, St. Kremer, Inorg. Chimica Acta 65, L115 (1982)

    Google Scholar 

  61. J.V. Folgado, W. Henke, R. Allmann, H. Stratemeier, D. Beltran-Porter, T. Rojo, D. Reinen, Inorg. Chem. 29, 29 (1990)

    Article  Google Scholar 

  62. F.S. Ham, in Electron Paramagnetic Resonance, ed. by S. Geshwind (Plenum, New York, 1972)

    Google Scholar 

  63. D. Babel, R. Haegele, J. Solid State Chem. 18, 36 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to thanks to Prof. Dr. Horst Köppel, Heidelberg, for his generous help in the technical handling of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Reinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reinen, D., Atanasov, M. (2009). The Influence of Jahn–Teller Coupling on the High-Spin/Low-Spin Equilibria of Octahedral MIIIL6 Polyhedra (MIII : Mn − Cu), with NiF6 3− as the Model Example. In: Köppel, H., Yarkony, D., Barentzen, H. (eds) The Jahn-Teller Effect. Springer Series in Chemical Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03432-9_15

Download citation

Publish with us

Policies and ethics