Skip to main content

MicroRNA-Mediated mRNA Deadenylation and Repression of Protein Synthesis in a Mammalian Cell-Free System

  • Chapter
  • First Online:
miRNA Regulation of the Translational Machinery

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 50))

Abstract

Cell-free systems are valuable tools for analyses of a post-transcriptional gene expression. The biochemical aspects of RNA interference have been extensively studied by using extracts prepared from Drosophila embryos. However, the mechanism by which microRNAs regulate protein synthesis is still elusive. We established a mammalian cell-free system that recapitulates let-7 microRNA-mediated repression of protein synthesis. Using this system, we found that a target mRNA was deadenylated when it was translationally repressed. The experimental data strongly suggested that the deadenylation was a cause, but not a result, of translational repression. In this chapter, we describe our cell-free system and discuss the significance of microRNA-mediated mRNA deadenylation in the repression of protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  CAS  PubMed  Google Scholar 

  • Dehlin E, Wormington M, Korner CG, Wahle E (2000) Cap-dependent deadenylation of mRNA. EMBO J 19:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Dowben RM, Gaffey A, Lynch PM (1968) Isolation of liver and muscle polyribosomes in high yield after cell disruption by nitrogen cavitation. FEBS Lett 2:1–3

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  CAS  PubMed  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  CAS  PubMed  Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102:16961–16966

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ, Hunt T (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol 96:50–74

    Article  CAS  PubMed  Google Scholar 

  • Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19:104–113

    Article  CAS  PubMed  Google Scholar 

  • Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317:1764–1767

    Article  CAS  PubMed  Google Scholar 

  • Mendez R, Richter JD (2001) Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2:521–529

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  • Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480

    Article  CAS  PubMed  Google Scholar 

  • Sachs A (2000) Physical and functional interactions between the mRNA cap structure and the poly(A) tail. In Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 447–465

    Google Scholar 

  • Short CR, Maines MD, Davis LE (1972) Preparation of hepatic microsomal fraction for drug metabolism studies by rapid decompression homogenization. Proc Soc Exp Biol Med 140:58–65

    CAS  PubMed  Google Scholar 

  • Thermann R, Hentze MW (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447:875–878

    Article  CAS  PubMed  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    Article  CAS  PubMed  Google Scholar 

  • Wakiyama M, Imataka H, Sonenberg N (2000) Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr Biol 10:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Wakiyama M, Kaitsu Y, Yokoyama S (2006) Cell-free translation system from Drosophila S2 cells that recapitulates RNAi. Biochem Biophys Res Commun 343:1067–1071

    Article  CAS  PubMed  Google Scholar 

  • Wakiyama M, Takimoto K, Ohara O, Yokoyama S (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21:1857–1862

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Love TM, Call ME, Doench JG, Novina CD (2006) Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell 22:553–560

    Article  CAS  PubMed  Google Scholar 

  • Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3’UTR regulation as a way of life. Trends Genet 18:150–157

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103:4034–4039

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Wakiyama M, Yazaki K, Miura K (1997) Transmission electron and atomic force microscopic observation of polysomes on carbon-coated grids prepared by surface spreading. J Electron Microsc 46:503–506

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), and by the National Project on Protein Structural and Functional Analysis, Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Yokoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wakiyama, M., Yokoyama, S. (2010). MicroRNA-Mediated mRNA Deadenylation and Repression of Protein Synthesis in a Mammalian Cell-Free System. In: Rhoads, R. (eds) miRNA Regulation of the Translational Machinery. Progress in Molecular and Subcellular Biology(), vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03103-8_6

Download citation

Publish with us

Policies and ethics