Skip to main content

The Inhibitory Effect of Apolipoprotein B mRNA-Editing Enzyme Catalytic Polypeptide-Like 3G (APOBEC3G) and Its Family Members on the Activity of Cellular MicroRNAs

  • Chapter
  • First Online:
miRNA Regulation of the Translational Machinery

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 50))

Abstract

The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambros V, Chen X (2007) The regulation of genes and genomes by small RNAs. Development 134:1635–1641

    CAS  PubMed  Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    CAS  PubMed  Google Scholar 

  • Argyris EG, Acheampong E, Wang F, Huang J, Chen K, et al (2007) The interferon-induced expression of APOBEC3G in human blood-brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system. Virology 367:440–451

    Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    CAS  PubMed  Google Scholar 

  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    CAS  PubMed  Google Scholar 

  • Bishop KN, Holmes RK, Malim MH (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80:8450–8458

    CAS  PubMed  Google Scholar 

  • Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, Malim MH (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14:1392–1396

    CAS  PubMed  Google Scholar 

  • Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4:e1000231

    PubMed  Google Scholar 

  • Bogerd HP, Wiegand HL, Doehle BP, Cullen BR. 2007. The intrinsic antiretroviral factor APOBEC3B contains two enzymatically active cytidine deaminase domains. Virology 364:486–493

    Google Scholar 

  • Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR (2006) APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucl Acids Res 34:89–95

    CAS  PubMed  Google Scholar 

  • Bonvin M, Achermann F, Greeve I, Stroka D, Keogh A et al (2006) Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43:1364–1374

    CAS  PubMed  Google Scholar 

  • Bruno I, Wilkinson MF (2006) P-bodies react to stress and nonsense. Cell 125:1036–1038

    CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    CAS  PubMed  Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496

    CAS  PubMed  Google Scholar 

  • Chen K, Huang J, Zhang C, Huang S, Nunnari G et al (2006) Alpha interferon potently enhances the anti-human immunodeficiency virus type 1 activity of APOBEC3G in resting primary CD4 T cells. J Virol 80:7645–7657

    CAS  PubMed  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    CAS  PubMed  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    CAS  PubMed  Google Scholar 

  • Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435:108–114

    CAS  PubMed  Google Scholar 

  • Chiu YL, Witkowska HE, Hall SC, Santiago M, Soros VB et al (2006) High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci U S A 103:15588–15593

    CAS  PubMed  Google Scholar 

  • Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    PubMed  Google Scholar 

  • Cook HA, Koppetsch BS, Wu J, Theurkauf WE (2004) The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 116:817–829

    CAS  PubMed  Google Scholar 

  • Doehle BP, Schafer A, Wiegand HL, Bogerd HP, Cullen BR (2005) Differential sensitivity of murine leukemia virus to APOBEC3-mediated inhibition is governed by virion exclusion. J Virol 79:8201–8207

    CAS  PubMed  Google Scholar 

  • Dutko JA, Schafer A, Kenny AE, Cullen BR, Curcio MJ (2005) Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases. Curr Biol 15:661–666

    CAS  PubMed  Google Scholar 

  • Ehrlich ES, Yu XF (2006) Lentiviral Vif: viral hijacker of the ubiquitin-proteasome system. Int J Hematol 83:208–212

    CAS  PubMed  Google Scholar 

  • Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D et al (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–433

    CAS  PubMed  Google Scholar 

  • Esnault C, Millet J, Schwartz O, Heidmann T (2006) Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucl Acids Res 34:1522–1531

    CAS  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007a) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    CAS  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007b) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    CAS  PubMed  Google Scholar 

  • Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    CAS  PubMed  Google Scholar 

  • Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130:287–297

    PubMed  Google Scholar 

  • Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S et al (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 81:2165–2178

    CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    CAS  PubMed  Google Scholar 

  • Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM et al (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11:1253–1263

    CAS  PubMed  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    CAS  PubMed  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    CAS  PubMed  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    CAS  PubMed  Google Scholar 

  • Guo F, Cen S, Niu M, Saadatmand J, Kleiman L (2006) Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J Virol 80:11710–11722

    CAS  PubMed  Google Scholar 

  • Guo F, Cen S, Niu M, Yang Y, Gorelick RJ, Kleiman L (2007) The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA. J Virol 81:11322–11331

    CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    CAS  PubMed  Google Scholar 

  • Holmes RK, Koning FA, Bishop KN, Malim MH (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G. J Biol Chem 282:2587–2595

    CAS  PubMed  Google Scholar 

  • Huang J, Liang Z, Yang B, Tian H, Ma J, Zhang H (2007) Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. J Biol Chem 282:33632–33640

    CAS  PubMed  Google Scholar 

  • Hulme AE, Bogerd HP, Cullen BR, Moran JV (2007) Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 390:199–205

    CAS  PubMed  Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102:16961–16966

    CAS  PubMed  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    CAS  PubMed  Google Scholar 

  • Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W et al (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucl Acids Res 35:7096–7108

    CAS  PubMed  Google Scholar 

  • Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M et al (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    PubMed  Google Scholar 

  • Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I et al (2002) An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79:285–296

    CAS  PubMed  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Takaori-Kondo A, Miyauchi Y, Iwai K, Uchiyama T (2005) Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C complex is essential for Vif function. J Biol Chem 280:18573–18578

    CAS  PubMed  Google Scholar 

  • Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D (2006) The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 281:29105–29119

    CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    CAS  PubMed  Google Scholar 

  • Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–532

    CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    CAS  PubMed  Google Scholar 

  • Li XY, Guo F, Zhang L, Kleiman L, Cen S (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282:32065–32074

    CAS  PubMed  Google Scholar 

  • Lim AK, Kai T (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci U S A 104:6714–6719

    CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    CAS  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    CAS  PubMed  Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266

    PubMed  Google Scholar 

  • Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5’-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    CAS  PubMed  Google Scholar 

  • Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103

    CAS  PubMed  Google Scholar 

  • Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R et al (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114:21–31

    CAS  PubMed  Google Scholar 

  • Marin M, Rose KM, Kozak SL, Kabat D (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9:1398–1403

    CAS  PubMed  Google Scholar 

  • Maroney PA, Yu Y, Fisher J, Nilsen TW (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13:1102–1107

    CAS  PubMed  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    CAS  PubMed  Google Scholar 

  • Mehle A, Goncalves J, Santa-Marta M, McPike M, Gabuzda D (2004a) Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 18:2861–2866

    CAS  PubMed  Google Scholar 

  • Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D (2004b) Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 279:7792–7798

    CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Peters L, Chen PY, Urlaub H et al (2005) Identification of novel argonaute-associated proteins. Curr Biol 15:2149–2155

    CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    CAS  PubMed  Google Scholar 

  • Navaratnam N, Sarwar R (2006) An overview of cytidine deaminases. Int J Hematol 83:195–200

    CAS  PubMed  Google Scholar 

  • Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR et al (2005) Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15:166–170

    CAS  PubMed  Google Scholar 

  • Noguchi C, Ishino H, Tsuge M, Fujimoto Y, Imamura M et al (2005) G to A hypermutation of hepatitis B virus. Hepatology 41:626–633

    CAS  PubMed  Google Scholar 

  • Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

    CAS  PubMed  Google Scholar 

  • Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666

    CAS  PubMed  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    CAS  PubMed  Google Scholar 

  • Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434:663–666

    CAS  PubMed  Google Scholar 

  • Peng G, Lei KJ, Jin W, Greenwell-Wild T, Wahl SM (2006) Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med 203:41–46

    CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    CAS  PubMed  Google Scholar 

  • Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E et al (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    CAS  PubMed  Google Scholar 

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    CAS  PubMed  Google Scholar 

  • Sarkis PT, Ying S, Xu R, Yu XF (2006) STAT1-independent cell type-specific regulation of antiviral APOBEC3G by IFN-alpha. J Immunol 177:4530–4540

    CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650

    CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Marusawa H, Seno H, Matsumoto Y, Ueda Y et al (2006) Anti-viral protein APOBEC3G is induced by interferon-alpha stimulation in human hepatocytes. Biochem Biophys Res Commun 341:314–319

    CAS  PubMed  Google Scholar 

  • Tijsterman M, Plasterk RH (2004) Dicers at RISC; the mechanism of RNAi. Cell 117:1–3

    CAS  PubMed  Google Scholar 

  • Tomari Y, Du T, Haley B, Schwarz DS, Bennett R et al (2004) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116:831–841

    CAS  PubMed  Google Scholar 

  • Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130:299–308

    CAS  PubMed  Google Scholar 

  • Turelli P, Mangeat B, Jost S, Vianin S, Trono D (2004) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303:1829

    PubMed  Google Scholar 

  • Turelli P, Trono D (2005) Editing at the crossroad of innate and adaptive immunity. Science 307:1061–1065

    CAS  PubMed  Google Scholar 

  • Wichroski MJ, Ichiyama K, Rana TM (2005) Analysis of HIV-1 viral infectivity factor-mediated proteasome-dependent depletion of APOBEC3G: correlating function and subcellular localization. J Biol Chem 280:8387–8396

    CAS  PubMed  Google Scholar 

  • Wichroski MJ, Robb GB, Rana TM (2006) Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2:e41

    PubMed  Google Scholar 

  • Yang B, Chen K, Zhang C, Huang S, Zhang H (2007) Virion-associated Uracil DNA Glycosylase-2 and Apurinic/Apyrimidinic Endonuclease Are Involved in the Degradation of APOBEC3G-edited Nascent HIV-1 DNA. J Biol Chem 282:11667–11675

    CAS  PubMed  Google Scholar 

  • Yu Q, Chen D, Konig R, Mariani R, Unutmaz D, Landau NR (2004a) APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication. J Biol Chem 279:53379–53386

    CAS  PubMed  Google Scholar 

  • Yu Q, Konig R, Pillai S, Chiles K, Kearney M et al (2004b) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11:435–442

    CAS  PubMed  Google Scholar 

  • Yu X, Yu Y, Liu B, Luo K, Kong W et al (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–1060

    CAS  PubMed  Google Scholar 

  • Yu Y, Xiao Z, Ehrlich ES, Yu X, Yu XF (2004c) Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18:2867–2872

    CAS  PubMed  Google Scholar 

  • Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98

    CAS  PubMed  Google Scholar 

  • Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM (2004) Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78:6073–6076

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants AI058798 and AI052732 to H.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, H. (2010). The Inhibitory Effect of Apolipoprotein B mRNA-Editing Enzyme Catalytic Polypeptide-Like 3G (APOBEC3G) and Its Family Members on the Activity of Cellular MicroRNAs. In: Rhoads, R. (eds) miRNA Regulation of the Translational Machinery. Progress in Molecular and Subcellular Biology(), vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03103-8_5

Download citation

Publish with us

Policies and ethics