Skip to main content

Regulation of p27kip1 mRNA Expression by MicroRNAs

  • Chapter
  • First Online:
miRNA Regulation of the Translational Machinery

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 50))

Abstract

p27kip1 (p27) is a cell cycle inhibitor and tumor suppressor whose expression is highly regulated in the cell. Low levels of p27 have been associated with poor prognosis in cancer. Recently, several microRNAs have been described to control p27 expression in various tumor types. In this chapter, we will provide an overview on the role of microRNAs in cancer, and will discuss how microRNAs regulate p27 expression and the implications for tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21:1132–47

    Google Scholar 

  • Aleem E, Kiyokawa H, Kaldis P (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7:831–836

    Article  CAS  PubMed  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–36

    Google Scholar 

  • Baldassarre G, Barone MV, Belletti B, Sandomenico C, Bruni P, Spiezia S, Boccia A, Vento MT, Romano A, Pepe S, Fusco A, Viglietto G (1999) Key role of the cyclin-dependent kinase inhibitor p27kip1 for embryonal carcinoma cell survival and differentiation. Oncogene 18:6241–6251

    Article  CAS  PubMed  Google Scholar 

  • Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18:862–876

    Article  CAS  PubMed  Google Scholar 

  • Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169

    Article  CAS  PubMed  Google Scholar 

  • Blain SW, Scher HI, Cordon-Cardo C, Koff A (2003) p27 as a target for cancer therapeutics. Cancer Cell 3:111–115

    Article  CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Clin ZS, Moore BB, MacDongald OA, Cho KR, Fearon ER (2007) P53-Mediated activation of miRNA34 Candidate tumor-suppressor genes. Curr Biol 17:1298–307

    Google Scholar 

  • Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F (2007) p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 6:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Bryja V, Pacherník J, Soucek K, Horvath V, Dvorák P, Hampl A (2004) Increased apoptosis in differentiating p27-deficient mouse embryonic stem cells. Cell Mol Life Sci 61:1384–1400

    Article  CAS  PubMed  Google Scholar 

  • Bueno MJ, de Castro IP, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7:3143–3148

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Kim JH, Back SH, Jang SK (2005) Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Mol Cell Biol 25:1283–1297

    Article  CAS  PubMed  Google Scholar 

  • Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949

    Article  CAS  PubMed  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103:7024–7029

    Article  CAS  PubMed  Google Scholar 

  • Cuesta R, Martínez-Sánchez A, Gebauer F (2009) miR-181a regulates cap-dependent translation of p27kip1 mRNA in myeloid cells. Mol Cell Biol 29: 2841–2851

    Google Scholar 

  • Dellas A, Schultheiss E, Leivas MR, Moch H, Torhorst J (1998) Association of p27Kip1, cyclin E and c-myc expression with progression and prognosis in HPV-positive cervical neoplasms. Anticancer Res 18:3991–3998

    CAS  PubMed  Google Scholar 

  • Denicourt C, Saenz CC, Datnow B, Cui XS, Dowdy SF (2007) Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res 67:9238–9243

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  CAS  PubMed  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M, Felli N, Mattia G, Petrini M, Colombo MP, Peschle C, Carè A (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68:2745–2754

    Article  CAS  PubMed  Google Scholar 

  • Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85:733–744

    Article  CAS  PubMed  Google Scholar 

  • Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, Boldrini R, Donfrancesco A, Federici V, Giacomini P, Peschle C, Fruci D (2008) Antagomir-17–5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3:e2236

    Article  PubMed  Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:23716–23724

    Article  CAS  PubMed  Google Scholar 

  • Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez T, Seoane M, Caamano P, Vinuela J, Dominguez F, Zalvide J (2003) Inhibition of Cdk4 activity enhances translation of p27kip1 in quiescent Rb-negative cells. J Biol Chem 278:12688–12695

    Article  CAS  PubMed  Google Scholar 

  • Göpfert U, Kullmann M, Hengst L (2003) Cell cycle-dependent translation of p27 involves a responsive element in its 5’-UTR that overlaps with a uORF. Hum Mol Genet 12:1767–1779

    Article  PubMed  Google Scholar 

  • Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 28:1130–1134

    Article  Google Scholar 

  • Hengst L, Reed SI (1996) Translational control of p27Kip1 accumulation during the cell cycle. Science 271:1861–1864

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26:8191–201

    Google Scholar 

  • Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 367:re1

    Google Scholar 

  • Jiang H, Coleman J, Miskimins R, Srinivasan R, Miskimins WK (2007) Cap-independent translation through the p27 5’-UTR. Nucl Acids Res 35:4767–4778

    Article  CAS  PubMed  Google Scholar 

  • Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115

    Article  CAS  PubMed  Google Scholar 

  • Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Ørom UA, Lund AH, Perrakis A, Raz E, Agami R (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    Article  CAS  PubMed  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85:721–732

    Article  CAS  PubMed  Google Scholar 

  • Koff A (2006) How to decrease p27Kip1 levels during tumor development. Cancer Cell 9:75–76

    Article  CAS  PubMed  Google Scholar 

  • Kouvaraki M, Gorgoulis VG, Rassidakis GZ, Liodis P, Markopoulos C, Gogas J, Kittas C (2002) High expression levels of p27 correlate with lymph node status in a subset of advanced invasive breast carcinomas: relation to E-cadherin alterations, proliferative activity, and ploidy of the tumors. Cancer 94:2454–2465

    Article  CAS  PubMed  Google Scholar 

  • Kullmann M, Gopfert U, Siewe B, Hengst L (2002) ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5’UTR. Genes Dev 16:3087–3099

    Article  CAS  PubMed  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    Article  CAS  PubMed  Google Scholar 

  • Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I, Caffarelli E (2007) The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci U S A 104:7957–62

    Google Scholar 

  • le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, Farace MG, Agami R (2007a) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    Article  PubMed  Google Scholar 

  • le Sage C, Nagel R, Agami R (2007b) Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle 6:2742–2749

    Article  PubMed  Google Scholar 

  • Lee YS, Dutta A (2009) MicroRNAs in cancer Annu Rev Pathol 4:199–277

    Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J Pathol 214:17–24

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Dong Z, Han B, Yang Y, Liu Y, Zhang JT (2005) Regulation of expression by promoters versus internal ribosome entry site in the 5’-untranslated sequence of the human cyclin-dependent kinase inhibitor p27kip1. Nucl Acids Res 33:3763–3771

    Article  CAS  PubMed  Google Scholar 

  • Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD (2007) Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A 104:16164–16169

    Google Scholar 

  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    Article  CAS  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60–65

    Article  CAS  PubMed  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–9

    Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T (2007) The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 282:8256–8264

    Google Scholar 

  • Millard SS, Yan JS, Nguyen H, Pagano M, Kiyokawa H, Koff A (1997) Enhanced ribosomal association of p27(Kip1) mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem 272:7093–7098

    Article  CAS  PubMed  Google Scholar 

  • Millard SS, Vidal A, Markus M, Koff A (2000) A U-rich element in the 5’ untranslated region is necessary for the translation of p27 mRNA. Mol Cell Biol 20:5947–5959

    Article  CAS  PubMed  Google Scholar 

  • Miskimins WK, Wang G, Hawkinson M, Miskimins R (2001) Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol Cell Biol 21:4960–4967

    Article  CAS  PubMed  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) Mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140

    Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720

    Article  CAS  PubMed  Google Scholar 

  • Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20:1511–1524

    Article  CAS  PubMed  Google Scholar 

  • Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  • Philipp-Staheli J, Payne SR, Kemp CJ (2001) p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148–168

    Article  CAS  PubMed  Google Scholar 

  • Pierson J, Hostager B, Fan R, Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90:1–7

    Google Scholar 

  • Richter JD (2008) Think you know how miRNAs work? Think again. Nat Struct Mol Biol 15:334–336

    Article  CAS  PubMed  Google Scholar 

  • Russo AA, Jeffrey PD, Patten AK, Massagué J, Pavletich NP (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382:325–331

    Article  CAS  PubMed  Google Scholar 

  • Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME (2007) Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A 104:11400–11405

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18:2699–2711

    Article  CAS  PubMed  Google Scholar 

  • Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7G ppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21:1975–1982

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143

    Google Scholar 

  • Tagawa H, Karube K, Tsuzuki S, Ohshima K, Seto M (2007) Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci. 98:1482–90

    Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  CAS  PubMed  Google Scholar 

  • Vervoorts J, Lüscher B (2008) Post-translational regulation of the tumor suppressor p27(KIP1). Cell Mol Life Sci 65:3255–3264

    Article  CAS  PubMed  Google Scholar 

  • Vidal A, Millard SS, Miller JP, Koff A (2002) Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. J Biol Chem 277:16433–16440

    Article  CAS  PubMed  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 104:20350–2035

    Google Scholar 

  • Vrhovac R, Delmer A, Tang R, Marie JP, Zittoun R, Ajchenbaum-Cymbalista F (1998) Prognostic significance of the cell cycle inhibitor p27Kip1 in chronic B-cell lymphocytic leukemia. Blood 91:4694–4700

    CAS  PubMed  Google Scholar 

  • Watanabe J, Sato H, Kanai T, Kamata Y, Jobo T, Hata H, Fujisawa T, Ohno E, Kameya T, Kuramoto H (2002) Paradoxical expression of cell cycle inhibitor p27 in endometrioid adenocarcinoma of the uterine corpus – correlation with proliferation and clinicopathological parameters. Br J Cancer 87:81–85

    Article  CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory was supported by grants 02/028-00 from La Caixa Foundation, grants BMC2003-04108 and BFU2006-01874 from the Spanish Ministry of Education and Science, and grant 2005SGR00669 from the Department of Universities, Information and Sciences of the Generalitat of Catalunya (DURSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Gebauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez-Sánchez, A., Gebauer, F. (2010). Regulation of p27kip1 mRNA Expression by MicroRNAs. In: Rhoads, R. (eds) miRNA Regulation of the Translational Machinery. Progress in Molecular and Subcellular Biology(), vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03103-8_4

Download citation

Publish with us

Policies and ethics