Skip to main content

Biomechanical Aspects of Direct Skeletal Attachment of Lower Limb Prostheses

  • Chapter
  • First Online:
Biomechanics of Lower Limb Prosthetics

Abstract

In direct skeletal attachment (DSA) of limb prostheses, the main problems are the bone–implant and skin–implant interfaces. As we have demonstrated in this book, the design of prosthetic joints influences the forces applied to the residuum through the prosthetic socket. The same influence exists if the socket-type attachment is replaced by a direct-type attachment. By carefully selecting the prosthetic components, it is possible to reduce excessive forces and moments on the implant and prolong the safe bond of the implant with the residuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    International Society for Prosthetics and Orthotics.

  2. 2.

    The thin layer of cells lining the medullary cavity of a bone. 3Surgical replacement of arthritic or destructive joint with prosthesis.

References

  • Aaron RK, Morgan JR (2007) Biohybrid limbs: new materials and new properties. Med Health R I 90(1):4–6

    PubMed  Google Scholar 

  • Bateni H, Olney S (2002) Kinematic and kinetic variations of below-knee amputee gait. JPO 14(1):2–12

    Google Scholar 

  • Bowlby AA (1895) Surgical pathology and morbid anatomy, page 329. London, J. and A. Churchill, 640 p

    Google Scholar 

  • Branemark R, Branemark PI, Rydevik B, Myers RR (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181

    CAS  PubMed  Google Scholar 

  • Drygas KA, Taylor R, Sidebotham CG, Hugate RR, McAlexander H (2008) Transcutaneous tibial implants: a surgical procedure for restoring ambulation after amputation of the distal aspect of the tibia in a dog. Vet Surg 37(4):322–327

    Article  PubMed  Google Scholar 

  • Edell DJ (1986) A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng 33(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Eriksson E, Branemark PI (1994) Osseointegration from the perspective of the plastic surgeon. Plast Reconstr Surg 93(3):626–637

    Article  CAS  PubMed  Google Scholar 

  • Frei H, O’Connell J, Masri BA, Duncan CP, Oxland TR (2005) Biological and mechanical changes of the bone graft-cement interface after impaction allografting. J Orthop Res 23(6): 1271–1279

    CAS  PubMed  Google Scholar 

  • Frossard L, Stevenson N, Smeathers J, Haggstrom E, Hagberg K, Sullivan J, Ewins D, Gow DL, Gray S, Branemark R (2008) Monitoring of the load regime applied on the osseointegrated fixation of a trans-femoral amputee: a tool for evidence-based practice. Prosthet Orthot Int 32(1):68–78

    Article  PubMed  Google Scholar 

  • Handbook (1977). Handbook of steel construction. Canadian Institute of Steel Construction

    Google Scholar 

  • Hasan Z, Thomas JS (1999) Kinematic redundancy. Prog Brain Res 123:379–387

    Article  CAS  PubMed  Google Scholar 

  • Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop (239):263–285

    Google Scholar 

  • Lundborg G, Branemark PI, Rosen B (1996) Osseointegrated thumb prostheses: a concept for fixation of digit prosthetic devices. J Hand Surg 21(2):216–221

    Article  CAS  Google Scholar 

  • O’Shaughnessy KD, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield K, Kuiken TA (2008) Targeted reinnervation to improve prosthesis control in transhumeral amputees. A report of three cases. J Bone Joint Surg 90(2):393–400

    Article  PubMed  Google Scholar 

  • Palmquist A, Jarmar T, Emanuelsson L, Branemark R, Engqvist H, Thomsen P (2008) Forearm bone-anchored amputation prosthesis: a case study on the osseointegration. Acta Orthop 79 (1):78–85

    Article  PubMed  Google Scholar 

  • Perry J, Boyd LA, Rao SS, Mulroy SJ (1997) Prosthetic weight acceptance mechanics in transtibial amputees wearing the single axis, seattle lite, and flex foot. IEEE Trans Rehabil Eng 5 (4):283–289

    Article  CAS  PubMed  Google Scholar 

  • Pitkin M (1995) Prosthetic foot and direct skeletal attachment. Proceedings of the 8th World Congress of ISPO. Melbourne, Australia, 42

    Google Scholar 

  • Pitkin M (2007) In-bone implantable shaft for prosthetic joints or for direct skeletal attachment of external limb prostheses and method of its installation. US Patent Application No. 11/899068

    Google Scholar 

  • Pitkin M (2008) One lesson from arthroplasty to osseointegration in a search for better fixation of in-bone implanted prosthesis. J Rehabil Res Dev 45(4):vii–xiv

    PubMed  Google Scholar 

  • Pitkin M (2009) On the way to total integration of the prosthetic pylon with residuum. J Rehabil Res Dev 46(3): 345-360

    Google Scholar 

  • Pitkin M, Blinova MI, Yudintseva NV, Potokin IL, Raykhtsaum G, Pinaev GP.(2004) Skin and bone integrated prosthetic technology. I. Characterization and morphology of human cells cultivated on titanium implants of different structures. 9th Russian National Congress “People and Health”. St. Petersburg, November 22–26, p 117

    Google Scholar 

  • Pitkin M, Raykhtsaum G (2005) Skin integrated device. US Patent Application No.11/233,233

    Google Scholar 

  • Pitkin M, Raykhtsaum G, Galibin OV, Protasov MV, Chihovskaya JV, Belyaeva IG (2006) Skin and bone integrated prosthetic pylon: a pilot animal study. J Rehabil Res Dev 43(4):573–580 http://www.rehab.research.va.gov/jour/06/43/4/pdf/pitkin.pdf

  • Pitkin M, Raykhtsaum G, Pilling J, Galibin O, Protasov M, Chihovskaya J, Belyaeva I, Blinova M, Yudintseva M, Potokin I, Pinaev G, Moxson V, Duz V (2007) Porous composite prosthetic pylon for integration with skin and bone. J Rehabil Res Dev 44(5):723–738 http://www.rehab.research.va.gov/jour/07/44/5/pdf/pitkin.pdf

    Google Scholar 

  • Robinson D, Hendel D, Halperin N (1994) Changes in femur dimensions in asymptomatic non-cemented hip arthroplasties. 20 cases followed for 5–8 years. Acta Orthop Scand 65(4): 415–417

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, BrĂĄnemark R, Ward D (2004) Future developments: osseointegration in transfemoral amputees. In: Smith D, Michael J, Bowker J (eds) Atlas of amputations and limb deficiencies: surgical, prosthetic and rehabilitation principles 3rd edn. pp 673–681

    Google Scholar 

  • Smidt GL (1990) Gait in rehabilitation. Churchill Livingstone, New York

    Google Scholar 

  • Stevens A, Lowe JS (2005) Human histology. Elsevier/Mosby, Amsterdam, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Pitkin Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pitkin, M.R. (2010). Biomechanical Aspects of Direct Skeletal Attachment of Lower Limb Prostheses. In: Biomechanics of Lower Limb Prosthetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03016-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03016-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03015-4

  • Online ISBN: 978-3-642-03016-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics