Skip to main content

Theory of Designing the Anthropomorphic Lower Limb Prostheses

  • Chapter
  • First Online:
Biomechanics of Lower Limb Prosthetics
  • 2630 Accesses

Abstract

In this chapter, we will show how the model of ballistic gait has been applied to synthesizing a mechanism of the prosthetic ankle and knee joints. Once the desired mechanical output of a prosthetic joint is determined, a routine must be developed for synthesizing some mechanism providing such an output. However, similar outputs can be generated by mechanisms of different types. In our study, we have chosen mechanisms with a higher pair because of their similarity with the structure of joints in an anatomical skeleton. The mechanisms of prosthetic ankle and knee joints were synthesized, and mechanical testing demonstrated to show that the anticipated “moment–angle” dependencies were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    with partial support from NIH Grant R44AR43290.

  2. 2.

    Sharon, MA, USA.

  3. 3.

    with partial support from NIH Grant 2R44HD38143.

References

  • Anderson, T. E. (2000). Early experience with OttoBock Microprocessor Hydraulic Stance and Swing Controlled Knee System. American Academy of Orthtists and Prosthetists (AAOP) 27th Ann. Meeting and Scientific Symp., San Diego, CA

    Google Scholar 

  • Belcaro G, Labropoulos N, Laurora G, Cesarone MR, De Sanctis MT, Incandela L (1994) Laser Doppler skin perfusion pressure in normal and vascular subjects with rest pain: an universal measurement? J Cardiovasc Surg (Torino) 35(1): 7–9

    CAS  Google Scholar 

  • Biedermann L (2002) Leg prosthesis with an artificial knee joint provided with an adjustment device. U.S. Patent No. 6423098

    Google Scholar 

  • Colwel, D. F., Jr. (1994). Six month clinical review of the Genesis Foot and Ankle System. 20th Ann. Meet. & Symp. AAOP, Nashville, TN

    Google Scholar 

  • Current TA, Kogler GF, Barth DG (1999) Static structural testing of trans-tibial composite sockets. Prosthet Orthot Int 23(2): 113–122

    CAS  PubMed  Google Scholar 

  • De Doncker E, Kowalsky C (1970) Le pied normal et pathologique. Acta Orthoped (Belg) 36(August–October)

    Google Scholar 

  • Detrembleur C, Vanmarsenille JM, De Cuyper F, Dierick F (2005) Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Gait Posture 21(3): 333–340

    Article  PubMed  Google Scholar 

  • Dierick F, Penta M, Renaut D, Detrembleur C (2004) A force measuring treadmill in clinical gait analysis. Gait Posture 20(3): 299–303

    Article  PubMed  Google Scholar 

  • Endolite (2000). Trans-tibial technical manual. Chas. A. Blatchford & Sons. http://www.endolite.com/transtibial/trans_tibial_to

  • Flick KC, Orendurff MS, Berge JS, Segal AD, Klute GK (2005) Comparison of human turning gait with the mechanical performance of lower limb prosthetic transverse rotation adapters. Prosthet Orthot Int 29(1): 73–81

    Article  CAS  PubMed  Google Scholar 

  • Freudenstein F, Sandor G (1959) Synthesis of path-generating mechanisms by means of programmed digital computer. ASME J Eng Ind B 81(2)

    Google Scholar 

  • Fridman A, Ona I, Isakov E (2003) The influence of prosthetic foot alignment on trans-tibial amputee gait. Prosthet Orthot Int 27(1): 17–22

    CAS  PubMed  Google Scholar 

  • Goh, J. C., S. E. Solomonidis, W. D. Spence and J. P. Paul (1984). “Biomechanical evaluation of SACH and uniaxial feet.” Prosthet Orthot Int 8(3): 147–54

    CAS  PubMed  Google Scholar 

  • Gramnas, F. (2002). “Total Knee.” http://www.ossur.com

  • Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP (2004) The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech 37(10): 1467–1474

    Article  PubMed  Google Scholar 

  • Hansen AH, Meier MR, Sam M, Childress DS, Edwards ML (2003) Alignment of trans-tibial prostheses based on roll-over shape principles. Prosthet Orthot Int 27(2): 89–99

    Article  CAS  PubMed  Google Scholar 

  • Hartenberger R, Denavit J (1964) Kinematic synthesis of linkages. New York, McGraw-Hill

    Google Scholar 

  • Hicks JH (1953) The mechanics of the foot. I. The joints. J Anat 87(4): 345–357

    CAS  PubMed  Google Scholar 

  • Hicks JH (1956) The mechanics of the foot. IV. The action of muscles on the foot in standing. Acta Anat (Basel) 27(3): 180–192

    Article  CAS  Google Scholar 

  • Hittenberger, D. C. (1986). “The Seattle foot.” Orthot Prosthet 40(4): 17–23

    Google Scholar 

  • Kerrigan DC, Riley PO, Nieto TJ, Della Croce U (2000) Knee joint torques: a comparison between women and men during barefoot walking. Arch Phys Med Rehabil 81(9): 1162–1165

    Article  CAS  PubMed  Google Scholar 

  • Kosek E, Ekholm J, Hansson P (1999) Pressure pain thresholds in different tissues in one body region. The influence of skin sensitivity in pressure algometry. Scand J Rehabil Med 31(2): 89–93

    Article  CAS  PubMed  Google Scholar 

  • Lebiedowski M, Kostewicz J (1977) [Determination of the pressure exerted by dynamic forces on the skin of the lower limb stump with prosthesis]. Chir Narzadow Ruchu Ortop Pol 42(6): 619–623

    CAS  PubMed  Google Scholar 

  • Mesplay KP (1995) The Knee as a Spring: Natural and Prosthetic Performance. 21th Annual Meeting and Symposium AAOP, New Orleans, LA

    Google Scholar 

  • Michael, J. W. (1999). “Modern prosthetic knee mechanisms.” Clin Orthop(361): 39–47

    Google Scholar 

  • Neo LD, Lee PV, Goh JC (2000) Principal structural testing of trans-tibial prosthetic assemblies: specimen preparation. Prosthet Orthot Int 24(3): 241–5

    Article  CAS  PubMed  Google Scholar 

  • Nietert M, Englisch N, Kreil P, Alba-Lopez G (1998) Loads in hip disarticulation prostheses during normal daily use. Prosthet Orthot Int 22(3): 199–215

    CAS  PubMed  Google Scholar 

  • Orendurff MS, Segal AD, Aiona MD, Dorociak RD (2005) Triceps surae force, length and velocity during walking. Gait Posture 21(2): 157–163

    Article  PubMed  Google Scholar 

  • Össur, K. (1992). Prosthetic Foot. Patent No 5,139,525, USA

    Google Scholar 

  • OttoBock (1999). “New Generation Leg System Revolutionizes Lower Limb Prostheses.” Orthotics and Prosthetics Business News 8(19): 47–49

    Google Scholar 

  • Perry J (1992) Gait Analysis: normal and pathological function. Thorofare, NJ, Slack, Inc

    Google Scholar 

  • Pitkin M (1974) Investigation and Simulation of the Spring Function of the Foot. Doctoral Thesis. Central Institute for Prosthetic Research. Moscow: 131

    Google Scholar 

  • Pitkin M (1975) Mechanics of the Mobility of the Human Foot. Mechanica Tverdogo Tela, Izvestia of the Academy of Sciences of the USSR, Moscow 10(6): 40–45

    Google Scholar 

  • Pitkin M (1994) Artificial Foot and Ankle. U.S. Patent No. 5,376,139. Washington, D.C.: U.S. Patent and Trademark Office

    Google Scholar 

  • Pitkin M (1995a) Artificial Knee Having Dual Flexion Action During Locomotion. U.S. Patent No. 5,405,408. Washington, D.C.: U.S. Patent and Trademark Office

    Google Scholar 

  • Pitkin M (1995b) Mechanical outcome of a rolling joint prosthetic foot, and its performance in dorsiflexion phase of the trans-tibial amputee gait. Journal of Prosthetics and Orthotics 7(4): 114–123

    Article  Google Scholar 

  • Pitkin M, Colvin J, Hayes J (1999) Gait analysis of twenty unilateral transtibial amputees. Report NIH/NIAMS/NCMRR Grant 3R44AR4 3290-03. Mt. Sterling, OH, Ohio Willow Wood Co

    Google Scholar 

  • Pitkin, M. (2001). Gait Analysis of four transfemoral amputees. Report, NIH/NCMRR Phase I Grant1R43HD38143-01”Rolling Joint Prosthetic Leg”

    Google Scholar 

  • Pitkin M, Hays J, Srinivasan S, Colvin J (2001) Artificial foot and ankle Washington, D.C.: U.S. Patent and Trademark Office, Ohio Willow Wood Company (Mount Sterling, OH)

    Google Scholar 

  • Pitkin MR (1996) Synthesis of a cycloidal mechanism of the prosthetic ankle. Prosthet Orthot Int 20(3): 159–171

    CAS  PubMed  Google Scholar 

  • Polievktov IA (1949) The Human Foot, Normal and Pathological [in Russian]. Dzaudzhikau, Izd-vo Severo-Osetinskoi ASSR

    Google Scholar 

  • Quesada PM, Pitkin M, Colvin J, Hays J (1998) Comparative assessment of dynamic rotational stiffness of common and prototype foot/ankle prostheses during simulated stance. Advances in Bioengineering 35: 317–318

    Google Scholar 

  • Schmalz T, Blumentritt S, Jarasch R (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16(3): 255–263

    Article  PubMed  Google Scholar 

  • Schmidt R, Schmelz M, Torebjork HE, Handwerker HO (2000) Mechano-insensitive nociceptors encode pain evoked by tonic pressure to human skin. Neuroscience 98(4): 793–800

    Article  CAS  PubMed  Google Scholar 

  • Scott SH, Winter DA (1991) Talocrural and talocalcaneal joint kinematics and kinetics during the stance phase of walking. J Biomech 24(8): 743–752

    Article  CAS  PubMed  Google Scholar 

  • Seelen HA, Anemaat S, Janssen HM Deckers JH (2003) Effects of prosthesis alignment on pressure distribution at the stump/socket interface in transtibial amputees during unsupported stance and gait. Clin Rehabil 17(7): 787–796

    Article  CAS  PubMed  Google Scholar 

  • Shigley JE, Uicker JJ (1995) Theory of Machines and Mechanisms, McGraw Hill

    Google Scholar 

  • Sienko-Thomas, S., C. E. Buckon, D. Helper, N. Turner, M. Moor and J. I. Krajbich (2000). “Comparison of the Seattle Lite Foot and Genesis II Prosthetic Foot during walking and running.” J Prosthet Orthot 12(1): 9–14

    Article  Google Scholar 

  • Spragg D, Tesar D (1971) Generalized Cycloidal Motion. Trans. ASME B(1): 122–129

    Google Scholar 

  • Strasser H (1917) Lehrbuch der Muskel- und Gelenkmechanik. Berlin, Verlag von Julius Springer

    Google Scholar 

  • Sutherland DH, Cooper L, Daniel D (1980) The role of the ankle plantar flexors in normal walking. J Bone Joint Surg Am 62(3): 354–363

    CAS  PubMed  Google Scholar 

  • Van Velzen JM, Houdijk H, Polomski W, Van Bennekom CA (2005) Usability of gait analysis in the alignment of trans-tibial prostheses: a clinical study. Prosthet Orthot Int 29(3): 255–267

    Article  PubMed  Google Scholar 

  • Wright DG, Rennels DC (1964) A Study of the Elastic Properties of Plantar Fascia. J Bone Joint Surg Am 46: 482–492

    CAS  PubMed  Google Scholar 

  • Zographos S, Chaminade B, Hobatho MC, Utheza G (2000) Experimental study of the subtalar joint axis: preliminary investigation. Surg Radiol Anat 22(5–6): 271–276

    CAS  PubMed  Google Scholar 

  • Яременко ДА, Ситенко АН, Ковалько НТ, Гибнер ВМ, Драчук ЮН, Литвин АА, Пасичнык ЛП (1980) Методы и результаты оценки функциональности стоп протезов. Протезирование и протезостроение, сб. трудов, вып. 55, М. ЦНИИПП: 72–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Pitkin Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pitkin, M.R. (2010). Theory of Designing the Anthropomorphic Lower Limb Prostheses. In: Biomechanics of Lower Limb Prosthetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03016-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03016-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03015-4

  • Online ISBN: 978-3-642-03016-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics