Skip to main content

Theory of Ballistic Gait in Prosthetics

  • Chapter
  • First Online:
Biomechanics of Lower Limb Prosthetics

Abstract

Let us come back to the prosthesis development chart (Fig. 1.19). We will begin with gait analysis in normal subjects and will use the model of ballistic synergy as a filter for selecting the key characteristics from the overwhelming amount of available data. We will consider the contribution of the lower limb segments to the generation of the body’s propulsion. From that analysis, we will derive recommendations for the prosthetic foot and knee that aim to better compensate for the anatomical segments lost in amputation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Design Simulation Technologies, Inc.Canton, MI 48187, USA.

References

  • Abe D, Yanagawa K, Niihata S (2004) Effects of load carriage, load position, and walking speed on energy cost of walking. Appl Ergon 35(4):329–335

    Article  PubMed  Google Scholar 

  • Barr AE, Siegel KL, Danoff JV, McGarvey CL 3rd, Tomasko A, Sable I, Stanhope SJ (1992) Biomechanical comparison of the energy-storing capabilities of SACH and Carbon Copy II prosthetic feet during the stance phase of gait in a person with below-knee amputation. Phys Ther 72(5):344–354

    CAS  PubMed  Google Scholar 

  • Bernstein N (1967) The co-ordination and regulation of movements. Pergamon, Oxford

    Google Scholar 

  • Boltyansky VG (1969) Mathematical methods of control. Moscow

    Google Scholar 

  • Breakey J (1976) Gait of unilateral below-knee amputees. Orth Prosth 30(4):17–24

    Google Scholar 

  • Cavagna GA (1970) Elastic bounce of the body. J Appl Physiol 29(3):279–282

    CAS  PubMed  Google Scholar 

  • Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712):1082–1085

    Article  CAS  PubMed  Google Scholar 

  • Crenna P, Cuong DM, Breniere Y (2001) Motor programmes for the termination of gait in humans: organisation and velocity-dependent adaptation. J Physiol 537(Pt 3):1059–1072

    Article  CAS  PubMed  Google Scholar 

  • Crenna P, Frigo C (1991) A motor programme for the initiation of forward-oriented movements in humans. J Physiol 437:635–653

    CAS  PubMed  Google Scholar 

  • Czerniecki JM (1996) Rehabilitation in limb deficiency. 1. Gait and motion analysis. Arch Phys Med Rehabil 77(3 Suppl):S3–S8

    Article  CAS  PubMed  Google Scholar 

  • Dankowicz H, Adolfsson J, Nordmark A (2001) Repetitive gait of passive bipedal mechanisms in a three-dimensional environment. J Biomech Eng 123(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Detrembleur C, Vanmarsenille JM, De Cuyper F, Dierick F (2005) Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Gait Posture 21(3):333–340

    Article  PubMed  Google Scholar 

  • Dierick F, Penta M, Renaut D, Detrembleur C (2004) A force measuring treadmill in clinical gait analysis. Gait Posture 20(3):299–303

    Article  PubMed  Google Scholar 

  • Dillingham TR, Lehmann JF, Price R (1992) Effect of lower limb on body propulsion. Arch Phys Med Rehabil 73(7):647–651

    CAS  PubMed  Google Scholar 

  • Dreeben O (2006) Introduction to physical therapy for physical therapist assistants. Jones and Bartlett, Sudbury

    Google Scholar 

  • Elftman H (1939) Forces and energy changes in the leg during walking. Am J Physiol 125(2):339–356

    Google Scholar 

  • Fitzpatrick RC, Taylor JL, McCloskey DI (1992) Ankle stiffness of standing humans in response to imperceptible perturbation: reflex and task-dependent components. J Physiol 454:533–547

    CAS  PubMed  Google Scholar 

  • Gage J (1990) An overview of normal walking. Instructional course lectures, American Academy of Orthopaedic Surgeons 39:291–303

    CAS  Google Scholar 

  • Goswami A, Espiau B, Keramane A (1996) Limit cycles and their stability in a passive bipedal gait. IEEE Int Conf Robot Autom 1:246–251

    Google Scholar 

  • Han TR, Chung SG, Shin HI (2003) Gait patterns of transtibial amputee patients walking indoors barefoot. Am J Phys Med Rehabil 82(2):96–100

    Article  PubMed  Google Scholar 

  • Hermodsson Y, Ekdahl C, Persson BM, Roxendal G (1994) Standing balance in trans-tibial amputees following vascular disease or trauma: a comparative study with healthy subjects. Prosthet Orthot Int 18(3):150–158

    CAS  PubMed  Google Scholar 

  • Hof AL, Geelen BA, Van den Berg J (1983) Calf muscle moment, work and efficiency in level walking; role of series elasticity. J Biomech 16(7):523–537

    Article  CAS  PubMed  Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix Algebra. Cambridge University, Cambridge, UK

    Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860

    Article  CAS  PubMed  Google Scholar 

  • Kepple TM, Siegel KL, Holdena JP, Stanhope SJ (1997) Relative contributions of the lower extremity joint moments to forward progression and support during gait. Gait Posture 6(1):1–8

    Article  Google Scholar 

  • Kirtley C (2005) Clinical gait analysis : theory and practice. Elsevier, Edinburgh

    Google Scholar 

  • Laaksonen MS, Kyrolainen H, Kalliokoski KK, Nuutila P, Knuuti J (2006) The association between muscle EMG and perfusion in knee extensor muscles. Clin Physiol Funct Imaging 26(2):99–105

    Article  PubMed  Google Scholar 

  • Lehmann JF, Price R, Boswell-Bessette S, Dralle A, Questad K (1993) Comprehensive analysis of dynamic elastic response feet: seattle ankle/lite foot versus SACH foot. Arch Phys Med Rehabil 74(8):853–861

    Article  CAS  PubMed  Google Scholar 

  • Loram ID, Lakie M (2002) Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol 545(Pt 3):1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Mann RA, Moran GT, Dougherty SE (1986) Comparative electromyography of the lower extremity in jogging, running, and sprinting. Am J Sports Med 14(6):501–510

    Article  CAS  PubMed  Google Scholar 

  • May DR, Davis B (1974) Gait and the lower-limb amputee. Physiotherapy 60(6):166–171

    CAS  PubMed  Google Scholar 

  • McCronville J, Churchill T, Kaleps I, Clauser C, Cuzzi J (1980) Anthropometric relationships of body and body segments moments of inertia. Anthropology Research Project, Yellow Springs, OH

    Google Scholar 

  • McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Article  Google Scholar 

  • Meinders M, Gitter A, Czerniecki JM (1998) The role of ankle plantar flexor muscle work during walking. Scand J Rehabil Med 30(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Shimoyama I (1984) Dynamic walk of a biped. Int J Robot Res 3(2):60–74

    Article  Google Scholar 

  • Mochon S, McMahon T (1979) Ballistic walking. An improved model. Math Biosci 52:241–260

    Article  Google Scholar 

  • Murray MP, Guten GN, Sepic SB, Gardner GM, Baldwin JM (1978) Function of the triceps surae during gait. Compensatory mechanisms for unilateral loss. J Bone Joint Surg Am 60(4):473–476

    CAS  PubMed  Google Scholar 

  • Oberg T, Karsznia A, Oberg K (1993) Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 30(2):210–223

    CAS  PubMed  Google Scholar 

  • Pedotti A, Crenna P, Deat A, Frigo C, Massion J (1989) Postural synergies in axial movements: short and long-term adaptation. Exp Brain Res 74(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Perry J (1992) Gait Analysis: normal and pathological function. Slack, Thorofare, NJ

    Google Scholar 

  • Pitkin M (1970) Mathematical modeling of one-leg balance. St. Petersburg University, St. Petersburg, Russia, p 35

    Google Scholar 

  • Pitkin M (1975) Kinematic and dynamic analysis of human gait (Rus). Proceedings of the first all-union conference in biomechanics. RNIITO, Riga, Latvia, pp 279–283

    Google Scholar 

  • Pitkin M (1975b) Mechanics of the mobility of the human foot. Mech Solids 10(6):31–36

    Google Scholar 

  • Pitkin M (1975) Model of the foot with osseomorphic connection of its elements. Prostheses and Prosthetics. Moscow 35, pp 83–89

    Google Scholar 

  • Pitkin M (1977) Human foot as a propulsor in gait. Prostheses and Prosthetics. Moscow 42, pp 34–39

    Google Scholar 

  • Pitkin M (1984) Simulation of a foot contribution in ballistic knee extension. Prostheses and Prosthetics. Moscow 70, pp 98–102

    Google Scholar 

  • Pitkin M (1994) Artificial foot and ankle. Patent No. 5,376,139. Washington, D.C.: U.S. Patent and Trademark Office

    Google Scholar 

  • Pitkin M (1995) Artificial knee having dual flexion action during locomotion. U.S. Patent No. 5,405,408. Washington, D.C.: U.S. Patent and Trademark Office

    Google Scholar 

  • Pitkin M (1995b) Mechanical outcome of a rolling joint prosthetic foot, and its performance in dorsiflexion phase of the trans-tibial amputee gait. J Prosthet Orthot 7(4):114–123

    Article  Google Scholar 

  • Pitkin M (1997a) Characteristics of Prosthetic Gait Synergy and their dependence on parameters of prosthetic joints. XXXII International Congress of Physiological Sciences. St. Petersburg, Russia

    Google Scholar 

  • Pitkin M (1997b) Effects of design variants in lower limb prostheses on gait synergy. J Prosthet Orthot 9(3):113–122

    Article  Google Scholar 

  • Pitkin M (1997) Pain preventive gait synergy hypothesis in leg amputees. Proceedings of XVIth Congress of the ISB. Tokyo, Japan

    Google Scholar 

  • Pitkin M (2006) Biomechanics of the joints’ moments in design of the lower limb prostheses. Bull Russian Guild Prosthet Orthot 11(1(23)):27–33

    Google Scholar 

  • Pitkin M (2006) Propulsion function of the foot as a component of ballistic synergy of gait. Bull Russian Guild Prosthet Orthot 11(3–4/25–26):38–43

    Google Scholar 

  • Pitkin M (2009) Regular and intentional generation of propulsion in normal gait as prototype for prosthetic design. IEEE Eurocon 2009 International Conference. St. Petersburg, Russia, pp 18–23

    Google Scholar 

  • Pitkin M, Colvin J, Hayes J (1999) Gait analysis of twenty unilateral transtibial amputees. Report NIH/NIAMS/NCMRR Grant 3R44AR4 3290-03. Mt. Sterling, OH, Ohio Willow Wood Co

    Google Scholar 

  • Pitkin MR (1996) Synthesis of a cycloidal mechanism of the prosthetic ankle. Prosthet Orthot Int 20(3):159–171

    CAS  PubMed  Google Scholar 

  • Rab GT (1994) Muscle. Human walking. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Riley PO, Della Croce U, Kerrigan DC (2001) Propulsive adaptation to changing gait speed. J Biomech 34(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Rose J, Gamble JG (eds) (1994) Human walking. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Rosenberg RM (1991) Analytical dynamics of discrete systems. Plenum, New York

    Google Scholar 

  • Rossi SA, Doyle W, Skinner HB (1995) Gait initiation of persons with below-knee amputation: the characterization and comparison of force profiles. J Rehabil Res Dev 32(2):120–127

    CAS  PubMed  Google Scholar 

  • Saunders JB, Inman VT, Eberhart HD (1953) The major determinants in normal and pathological gait. J Bone Joint Surg Am 35-A(3):543–558

    Google Scholar 

  • Scott SH, Winter DA (1991) Talocrural and talocalcaneal joint kinematics and kinetics during the stance phase of walking. J Biomech 24(8):743–752

    Article  CAS  PubMed  Google Scholar 

  • Sienko-Thomas S, Buckon CE, Helper D, Turner N, Moor M, Krajbich JI (2000) Comparison of the seattle lite foot and genesis II prosthetic foot during walking and running. J Prosthet Orthot 12(1):9–14

    Article  Google Scholar 

  • Sinkjaer T, Toft E, Andreassen S, Hornemann BC (1988) Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol 60(3):1110–1121

    CAS  PubMed  Google Scholar 

  • Skinner HB, Effeney DJ (1985) Gait analysis in amputees. Am J Phys Med 64(2):82–89

    CAS  PubMed  Google Scholar 

  • Smidt GL (1990) Gait in rehabilitation. Churchill Livingstone, New York

    Google Scholar 

  • Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems, 2nd edn. Springer, New York

    Google Scholar 

  • Sutherland DH (1966) An electromyographic study of the plantar flexors of the ankle in normal walking on the level. J Bone Joint Surg Am 48(1):66–71

    CAS  PubMed  Google Scholar 

  • Sutherland DH, Cooper L, Daniel D (1980a) The role of the ankle plantar flexors in normal walking. J Bone Joint Surg Am 62(3):354–363

    CAS  PubMed  Google Scholar 

  • Sutherland DH, Olshen R, Cooper L, Woo SL (1980b) The development of mature gait. J Bone Joint Surg Am 62(3):336–353

    CAS  PubMed  Google Scholar 

  • Torburn L, Perry J, Ayyappa E, Shanfield SL (1990) Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 27(4):369–384

    Article  CAS  PubMed  Google Scholar 

  • Tseng SC, Liu W, Finley M, McQuade K (2006) Muscle activation profiles about the knee during Tai-Chi stepping movement compared to the normal gait step. J Electromyogr Kinesiol 17(3):372–380

    Article  PubMed  Google Scholar 

  • Van Velzen JM, Houdijk H, Polomski W, Van Bennekom CA (2005) Usability of gait analysis in the alignment of trans-tibial prostheses: a clinical study. Prosthet Orthot Int 29(3):255–267

    Article  PubMed  Google Scholar 

  • Velikson V, Pitkin M, Mendelevich I (1973) Problem of Joint Moments Simulation. Biophysica, Academy of Sciences of the USSR. Moscow 18, pp 122–125

    Google Scholar 

  • Weber WE, Weber E (1991) Mechanics of the human walking apparatus. Springer, Berlin [translation from 1836 edition of Die Mechanik Der Menschlichen Gerverzeuge]

    Google Scholar 

  • Winter DA (1979) Biomechanics of human movement. John Willey and Sons, New York

    Google Scholar 

  • Winter DA (1983) Energy generation and absorption at the ankle and knee during fast, natural, and slow cadence. Clin Orthop Relat Res (175):147–154

    Google Scholar 

  • Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi J, Kinoshita N, Takanishi A, Kato I (1996) Development of a dynamic biped walking system for humanoid – development of a bipedwalking robot adapting to the humans’ living floor. IEEE International Conference on Robotics and Automation. pp 232–239

    Google Scholar 

  • Богданов ВА, Гурфинкель ВС (1976) Биомеханика локомоций человека. – В кн.: Физиология движений. Л., Наука

    Google Scholar 

  • Морейнис, И. Ш., Г. П. Гриценко, С. Г. Левит (1971) Биомеханический анализ ходьбы в норме и на протезах. Протезирование и протезостроение, сб. трудов, вып. ХХVI, М., ЦНИИПП: 7–16

    Google Scholar 

  • Питкин МР (1975) Модель стопы с остеоморфным соединением элементов. Протезирование и протезостроение, сб. трудов вып. 35, М., ЦНИИПП: 83–89

    Google Scholar 

  • Питкин МР (1977) Стопа человека как движитель при ходьбе. Протезирование и протезостроение, сб. трудов вып. 42, М., ЦНИИПП: 34–39

    Google Scholar 

  • Питкин МР (1980) Математическое моделирование ходьбы. Клиническая биомеханика // Под ред. В.И. Филатова. – Л.: Медицина: 74–82

    Google Scholar 

  • Питкин МР (1985) Кинематические и динамические характеристики ходьбы в зависимости от фрикционных свойств опорной поверхности. Протезирование и протезостроение, сб. трудов вып. 73, М., ЦНИИПП: 98–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Pitkin Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pitkin, M.R. (2010). Theory of Ballistic Gait in Prosthetics. In: Biomechanics of Lower Limb Prosthetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03016-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03016-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03015-4

  • Online ISBN: 978-3-642-03016-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics