Skip to main content

Counting Subgraphs via Homomorphisms

  • Conference paper
Automata, Languages and Programming (ICALP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Included in the following conference series:

Abstract

Counting homomorphisms between graphs has applications in variety of areas, including extremal graph theory, properties of graph products, partition functions in statistical physics and property testing of large graphs. In this work we show a new application of counting graph homomorphisms to the areas of exact and parameterized algorithms.

We introduce a generic approach for counting subgraphs in a graph. The main idea is to relate counting subgraphs to counting graph homomorphisms. This approach provides new algorithms and unifies several well known results in algorithms and combinatorics including the recent algorithm of Björklund, Husfeldt and Koivisto for computing the chromatic polynomial, the classical algorithm of Kohn, Gottlieb, Kohn, and Karp for counting Hamiltonian cycles, Ryser’s formula for counting perfect matchings of a bipartite graph, and color coding based algorithms of Alon, Yuster, and Zwick.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babai, L.: Moderately exponential bound for graph isomorphism. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 34–50. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  3. Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classification of finite simple groups. In: FOCS, pp. 162–171 (1983)

    Google Scholar 

  4. Bax, E.T.: Algorithms to count paths and cycles. Inform. Process. Lett. 52, 249–252 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beals, R., Chang, R., Gasarch, W.I., Torán, J.: On finding the number of graph automorphisms. Chicago J. Theor. Comput. Sci. (1999)

    Google Scholar 

  6. Bernardi, O., Noy, M., Welsh, D.: On the growth rate of minor-closed classes of graphs, http://arxiv.org/abs/0710.2995

  7. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect matchings. Algorithmica 52(2), 226–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: FOCS, pp. 575–582 (2006)

    Google Scholar 

  9. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC, pp. 67–74 (2007)

    Google Scholar 

  10. Blankenship, R., Oporowski, B.: Book embeddings of graphs and minor-closed classes. In: Proceedings of the 32nd Southeastern International Conference on Combinatorics, Graph Theory and Computing

    Google Scholar 

  11. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting graph homomorphisms. In: Topics in discrete mathematics. Algorithms Combin., vol. 26, pp. 315–371. Springer, Berlin (2006)

    Chapter  Google Scholar 

  12. Cygan, M., Pilipczuk, M.: Faster exact bandwidth. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 101–109. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from the other side. Theoret. Comput. Sci. 329, 315–323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Díaz, J., Serna, M.J., Thilikos, D.M.: Counting h-colorings of partial k-trees. Theor. Comput. Sci. 281, 291–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Structures Algorithms 17, 260–289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feige, U.: Coping with the NP-Hardness of the Graph Bandwidth Problem. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms for minimum-weight vertex separators. In: STOC, pp. 563–572 (2005)

    Google Scholar 

  18. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54, Art. 1, 24 (electronic) (2007)

    Google Scholar 

  19. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory Ser. B 48, 92–110 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford Lecture Series in Mathematics and its Applications, vol. 28. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  21. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1, 49–51 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman problem. In: Proceedings of the annual ACM conference, pp. 294–300 (1977)

    Google Scholar 

  23. Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In: FOCS, pp. 583–590 (2006)

    Google Scholar 

  24. Lovász, L.: Operations with structures. Acta Math. Hung. 18, 321–328 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malitz, S.M.: Genus g graphs have pagenumber \(O(\sqrt{g})\). J. Algorithms 17, 85–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)

    Google Scholar 

  27. Norine, S., Seymour, P.D., Thomas, R., Wollan, P.: Proper minor-closed families are small. J. Comb. Theory, Ser. B 96, 754–757 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ryser, H.J.: Combinatorial mathematics. The Carus Mathematical Monographs, vol. 14. The Mathematical Association of America (1963)

    Google Scholar 

  29. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amini, O., Fomin, F.V., Saurabh, S. (2009). Counting Subgraphs via Homomorphisms. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics