Skip to main content

Hollow-Optical Fiber Probes for Biomedical Spectroscopy

  • Chapter
Optical Guided-wave Chemical and Biosensors II

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 8))

  • 1421 Accesses

Abstract

Thin and flexible probes made with hollow-optical fibers may be useful for remote spectroscopy. Experimental results showed that these probes are useful for endoscopic measurements of infrared and Raman spectroscopy. A hollow-fiber probe has been used for remote FT-IR spectroscopy in the form of endoscopic measurement of infrared reflectometry spectra inside the body. This measurement was made possible by the hollow-fiber probe’s flexibility, durability, nontoxicity, and low transmission loss. A hollow-fiber probe with a ball lens at the end works as a confocal system for Raman spectroscopy. It can thus detect the molecular structure of biotissues with a high signal-to-noise ratio. Owing to their small diameter, the probes are useful for in vivo, noninvasive analysis using a flexible endoscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATR:

Attenuated total reflection

COP:

Cyclic olefin polymer

FT-IR:

Fourier transform infrared spectroscopy

NA:

Numerical aperture

TE mode:

Transverse electric mode

d :

Thickness of dielectric layer

j :

Imaginary unit

k :

Extinction coefficient

k 0 :

Wavenumber in vacuum

n :

Refractive index

p 0 :

Far-field profile of the incident beam

R :

Power reflection coefficient

r :

Reflection coefficient

T :

Inner radius of circular hollow waveguide

α :

Half of the power attenuation constant

φ :

Phase factor of reflection coefficient

ϕ :

Angle of incidence

λ:

Wavelength

θ :

Angle of incidence

ρ :

Amplitude factor of reflection coefficient

σ :

Root–mean-square height of irregular surface

References

  1. Bennet HE (1963) Specular reflectance of aluminized ground glass and the height distribution of surface irregularities. J Opt Soc Am 53:1389–1394

    Article  Google Scholar 

  2. Born M, Wolf E (1985) Principles of optics. Pergamon, New York, pp 36–66

    Google Scholar 

  3. Cooney TF, Schoen CL, Sharma K, Carey DM (1993) Rare-earth-doped glass fiber for background rejection in remote fiber-optic Raman probes: theory and analysis of holmium-bearing glass. Appl Spectrosc 47:1683–1692

    Article  CAS  Google Scholar 

  4. Grigorjeva L, Millers D, Kotomin E, Eglitis R, Lerman AA (1996) Optical properties of silver halide fibres: ageing studies. Appl Phys 29:578–583

    Article  CAS  Google Scholar 

  5. Harrington JA (2003) Infrared fibers and their applications, Chap 1. SPIE, Bellingham, WA

    Google Scholar 

  6. Katagiri T, Komachi Y, Hattori Y, Matsuura Y, Miyagi M, Tashiro H, Sato H (2006) Hollow-optical fiber probe for confocal Raman endoscopy. Proc SPIE 6083:60830

    Google Scholar 

  7. Komachi Y, Sato H, Aizawa K, Tashiro H (2005) Micro-optical fiber probe for use in an intravascular Raman endoscope. Appl Opt 44:4722–4732

    Article  Google Scholar 

  8. Komachi Y, Sato H, Matsuura Y, Miyagi M, Tashiro H (2005) Raman probe using a single hollow waveguide. Opt Lett 30:2942–2944

    Article  Google Scholar 

  9. Miyagi M (1985) Waveguide loss evaluation in circular hollow waveguides and its ray optical treatment. IEEE J Lightwave Technol 3:303–307

    Article  Google Scholar 

  10. Miyagi M, Kawakami S (1984) Design theory of dielectric-coated circular metallic waveguides for infrared transmission. IEEE J Lightwave Technol 2:116–126

    Article  CAS  Google Scholar 

  11. Palik ED (1985) Handbook of optical constants of solids. Academic, Orlando, FL, pp 749–763

    Google Scholar 

  12. Pinnow DA, Gentile AL, Standlee AG, Timper AJ, Hobrock LM (1978) Polycrystalline fiber optical waveguides for infrared transmission. Appl Phys Lett 33:28–29

    Article  CAS  Google Scholar 

  13. Seddon AB (1995) Chalcogenide glasses: a review of their preparation, properties, and applications. J Non-Cryst Sol 184:44–50

    Article  CAS  Google Scholar 

  14. Shi Y, Wang Y, Abe Y, Matsuura Y, Miyagi M, Sato S, Taniwaki M, Uyama H (1998) Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared. Appl Opt 37:7758–7762

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Matsuura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsuura, Y. (2010). Hollow-Optical Fiber Probes for Biomedical Spectroscopy. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors II. Springer Series on Chemical Sensors and Biosensors, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02827-4_7

Download citation

Publish with us

Policies and ethics