Skip to main content

Terahertz-Biosensing Technology: Progress, Limitations, and Future Outlook

  • Chapter
Optical Guided-wave Chemical and Biosensors II

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 8))

Abstract

After more than three decades of niche applications in the space sciences area, the field of terahertz (THz) technology is entering a new era of biomedical sensing and imaging. The past few years have seen an unprecedented expansion of terahertz ray technology in medical science, spanning applications as diverse as tumor recognition, dental cavities detection, and ligand–analyte sensing interaction. High cost, large sample volume, low sensitivity, lack of massive parallelism, and water absorption are still major challenges facing THz label-free sensing and imaging. The primary goal of current research in this field is to improve the THz sensor dynamic ranges, achieve faster data acquisition, and reduce water vapor absorption. In this chapter, THz biosensing capabilities, progress, and limitations are highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATR-FTIR:

Attenuated total reflection Fourier transform infrared

AFM:

Atomic force microscopy

QWP:

Quarter wave plate

SPR:

Surface plasma resonance

WHO:

World Health Organization

References

  1. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334:41–69

    Article  Google Scholar 

  2. Chinowsky TM, Quin JG, Bartholomew DU (2003) Performance of the “Spreeta 2000” integrated surface plasmon resonance affinity sensor. Sensors Actuators B Chem 91:266–274

    Article  Google Scholar 

  3. Menikh A, McColl R, Mannela CA, Zhang X-C (2002) Teraherts biosensing technology: frontiers and progress. Chem Phys Chem 3:655–658

    Article  CAS  Google Scholar 

  4. Rainsford T, Mickan SP, Abbott D (2005) T-ray sensing applications: review of global developments. SPIE 5649:826–838

    Article  Google Scholar 

  5. Ferguson B, Zhang Xi-C (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    Article  CAS  Google Scholar 

  6. Taylor JR, Fang MM, Nie S (2000) Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticules. Anal Chem 72:1979–1986

    Article  CAS  Google Scholar 

  7. Ebenstein Y, Mokari T, Banin U (2004) Quantum-dot-functionalized probes for fluorescence energy transfer based microscopy. J Phys Chem B 108:93–99

    Article  CAS  Google Scholar 

  8. Ueberfeld J, Walt DR (2004) Reversible ratiometric probe for quantitative DNA measurements. Anal Chem 76:947–952

    Article  CAS  Google Scholar 

  9. Epstein JR, Lee M, Walt DR (2002) High density fiber-optic genosensor microsphere array capable of zeptomole detection limites. Anal Chem 74:1836–1840

    Article  CAS  Google Scholar 

  10. Menikh A, Mickan SP, Liu H, MacColl R, Zhang Xi-C (2004) Label–free amplified bioaffinity detection using terahertz wave technology. Biosens Bioelectron 120:658–662

    Article  Google Scholar 

  11. Lechuga LM (2005) Optical biosensors. In: Gorton L (ed) Biosensors and modern biospecific analytical techniques, Comprehensive analytical chemistry. Elsevier, Amsterdam, pp 209–250

    Google Scholar 

  12. Jiang Z, Li M, Zhang X-C (2000) Dielectric constant measuement for thin films differential time-domain spectroscopy. Appl Phys Lett 76:3221–3223

    Article  CAS  Google Scholar 

  13. Born M, Wolf E (1980) Principals of optics, 6th edn. Cambridge University Press, London

    Google Scholar 

  14. Nagel M, Haring Boliver P, Brucherseifer M, Kurz H, Bosserhoff A, Buttner R (2002) Integrated planar terahertz resonators for femtomolar sensitivity label free detection of DNA hybridization. Appl Opt 41:2074–2078

    Article  CAS  Google Scholar 

  15. Lu JY, Chen LJ, Kao TF, Chang HH, Chen HW, Chen YC, Wu RB (2006) Terahertz microchip for illicit drug detection. IEEE Photon Technol Lett 18:2254–2256

    Google Scholar 

  16. Kraemer T, Theis GA, Weber AA, Maurer HH (2000) Studies on the metabolism and toxicological detection of the amphetamine-like anorectic fenproporex in human urine by gas chromatography – mass spectrometry and fluorescence polarization immunoassay. J Chromatogr B 738:107–118

    Article  CAS  Google Scholar 

  17. Nagel M, Forst M, Kurz H (2006) THz biosensing devices: fundamental and technology. J Phys Condens Matter 18:S601–S618

    Article  Google Scholar 

  18. Globus T, Woolard D, Crowe TW, Khromova T, Gelmont B, Hesler J (2006) Terahertz Fourier transform, characterization of biological materials in a liquid phase. Appl Phys 39:3405–3413

    CAS  Google Scholar 

  19. Knobloch P, Schmalstieg K, Koch M, Rehberg E, Vauti F, Donhuijsen K (2001) THz imaging of histo-pathological sample. Proc SPIE 4434:239–245

    Article  Google Scholar 

  20. Hall A, Girkin JM (2004) A review of potential new diagnostic modalities for caries lesions. J Dent Res 83:C89–C94

    Article  Google Scholar 

  21. Lechuga LM, Prieto F, Sepulveda B (2003) Optical sensors. In: Narayanaswamy R, Wolfbeis OS (eds) Industrial environment and diagnostic applications. Springer, Heidelberg, pp 227–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Menikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menikh, A. (2010). Terahertz-Biosensing Technology: Progress, Limitations, and Future Outlook. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors II. Springer Series on Chemical Sensors and Biosensors, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02827-4_11

Download citation

Publish with us

Policies and ethics