Skip to main content

Heart and Cardiovascular Engineering

  • Chapter
  • First Online:
Tissue Engineering
  • 3195 Accesses

Abstract

End stage organ diseases of the cardiovascular system are associated with intense individual harm, tremendous problems in medical therapy, and last but not least high socio-economic debits. The concept of “Tissue engineering” as a newly emerging interdisciplinary strategy to generate bioartificial implants thus can be taken as scientific reaction to face this serious and incriminating situation. Here, we present selected examples and concepts of the historic development, associated limitations, and prospective key activities in cardiovascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR. Cardiac organogenesis in vitro: Reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 1999, Apr;5(2):103–18.

    CAS  PubMed  Google Scholar 

  2. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, Feb 14;275(5302):964–7.

    CAS  PubMed  Google Scholar 

  3. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002, Dec 10;106(24):3009–17.

    PubMed  Google Scholar 

  4. AVID Clinical Trial Center; The Antiarrhythmics Versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in pazients resucitated from near-fatal ventricular arrhythmias. Engl J Med. 1997;337:1576–83.

    Google Scholar 

  5. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003, Feb 25;107(7):1024–32.

    PubMed  Google Scholar 

  6. Barratt-Boyes BG. A method for preparing and inserting a homograft aortic valve. Br J Surg 1965, Nov;52(11):847–56.

    CAS  PubMed  Google Scholar 

  7. Bechtel JFM, et al. Evaluation of a decellularized homograft valve for reconstruction of the right ventricular outflow tract in the Ross-procedure. In: Second Biennal Meeting of the Society for Heart Valve Disease; 2003 Jun 28–Jul 1; Palais des Congres – Porte Maillot, Paris, France; 2003. p. 347.

    Google Scholar 

  8. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994, Jan;89(1):151-63.

    Google Scholar 

  9. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 1999;85(12):1173-8.

    CAS  PubMed  Google Scholar 

  10. Carrel A. La technique operatoire des anastomoses vascularies at le transplantation des visceres. Lyon Med. 1902;89: 234–6.

    Google Scholar 

  11. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, et al. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999, Sep 5;64(5):580-9.

    CAS  PubMed  Google Scholar 

  12. Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Effects of oxygen on engineered cardiac muscle. Biotechnol Bioeng 2002, Jun 20;78(6):617-25.

    CAS  PubMed  Google Scholar 

  13. Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A, et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 2002, Sep 24;106(12 Suppl 1):I63–8.

    PubMed  Google Scholar 

  14. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 2006, Jul 4;114(1 Suppl):I132–7.

    PubMed  Google Scholar 

  15. Chambard M, Gabrion J, Mauchamp J. Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J Cell Biol. 1981;91:157–66.

    CAS  PubMed  Google Scholar 

  16. Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proc Natl Acad Sci U S A 2001, Sep 11;98(19):10733-8.

    CAS  PubMed  Google Scholar 

  17. CRAWFORD ES, DE BAKEY ME, MORRIS GC, GARRETT E. Evaluation of late failures after reconstructive operations for occlusive lesions of the aorta and iliac, femoral, and popliteal arteries. Surgery 1960, Jan;47:79-104.

    CAS  PubMed  Google Scholar 

  18. Dardik I, Darkik H. Vascular heterograft: Human umbilical cord vein as an aortic substitute in baboon. A preliminary report. J Med Primatol 1973;2(5):296-301.

    CAS  PubMed  Google Scholar 

  19. DeLaurentis DA, Friedman P. Sequential femoropopliteal bypass: another approach to the inadequate saphenous vein problem. Surgery. 1972;71(3):400–4.

    CAS  PubMed  Google Scholar 

  20. Deutsch M, Meinhart J, Fischlein T, Preiss P, Zilla P. Clinical autologous in vitro endothelialization of infrainguinal eptfe grafts in 100 patients: A 9-year experience. Surgery 1999, Nov;126(5):847-55.

    CAS  PubMed  Google Scholar 

  21. Dohmen PM, Ozaki S, Verbeken E, Yperman J, Flameng W, Konertz WF. Tissue engineering of an auto-xenograft pulmonary heart valve. Asian Cardiovasc Thorac Ann 2002, Mar;10(1):25-30.

    Google Scholar 

  22. DUBOST C, ALLARY M, OECONOMOS N. Resection of an aneurysm of the abdominal aorta: Reestablishment of the continuity by a preserved human arterial graft, with result after five months. AMA Arch Surg 1952, Mar;64(3):405-8.

    CAS  Google Scholar 

  23. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N Engl J Med 1991, Mar 21;324(12):781-8.

    CAS  PubMed  Google Scholar 

  24. Edelman ER. Vascular tissue engineering: designer arteries. Circ Res. 1999;85(12):1115–7.

    CAS  PubMed  Google Scholar 

  25. Edwards WS, Tapp JS. Chemically treated nylon tubes as arterial grafts. Surgery. 1955;38:61–70.

    CAS  PubMed  Google Scholar 

  26. Eschenhagen T, Zimmermann WH. Engineering myocardial tissue. Circ Res. 2005;97:1220–31.

    CAS  PubMed  Google Scholar 

  27. Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, et al. Three-Dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB J 1997, Jul;11(8):683-94.

    CAS  Google Scholar 

  28. Fast VG et al. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities. Circ Res. 1996;105:115–27.

    Google Scholar 

  29. Ferber D. Lab-grown organs begin to take shape. Science. 1999;284:422–3425.

    Google Scholar 

  30. Fink C et al. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 2000;14:669–79.

    CAS  PubMed  Google Scholar 

  31. Flinn WR, McDaniel MD, Yao JST, Fahey VA, Green D. Antithrombin III deficiency as a reflection of dynamic protein metabolism in patients undergoing vascular reconstruction. J Vasc Surg. 1984;1:888–95.

    CAS  PubMed  Google Scholar 

  32. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    CAS  PubMed  Google Scholar 

  33. Fuster V et al. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med. 1992;326: 242–50.

    CAS  PubMed  Google Scholar 

  34. Gaudesius G et al. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res. 2003;93:421–8.

    CAS  PubMed  Google Scholar 

  35. Gepstein L. Derivation and potential applications of human embryonic stem cells. Circ Res. 2003;91:866–76.

    Google Scholar 

  36. Gepstein L, Feld Y, Yankelson L. Somatic gene and cell therapy strategies for the treatment of cardiac arrhythmias. Am J Physiol Heart Circ Physiol. 2004;286:815–22.

    Google Scholar 

  37. Ginalska G, Kowalczuk D, Osinska M. A chemical method of gentamicin bonding to gelatine-sealed prosthetic vascular grafts. Int J Pharm. 2005;288(1):131–40.

    CAS  PubMed  Google Scholar 

  38. Ginalska G et al. Antibacterial activity of gentamicin-bonded gelatin-sealed polyethylene terephthalate vascular prostheses. Eur J Vasc Endovasc Surg. 2005;29(4):419–24.

    CAS  PubMed  Google Scholar 

  39. Goldstein S et al. Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann Thorac Surg. 2000;70:1962–9.

    CAS  PubMed  Google Scholar 

  40. Goyanes J. Nuevos trabajos de cirurgia vascular. Siglo Med. 1906;53:446–561.

    Google Scholar 

  41. Gross RE, Bill AH. Preliminary observations on the use of the human arterial grafts in the treatment of certain cardiovascular defects. N Engl J Med. 1948;239:578–91.

    CAS  PubMed  Google Scholar 

  42. Gross RE, Bill AH, Preice EC. Methods for preservation and transplantation of arterial grafts: observations on arterial grafts in dogs; Report on transplantation of preserved arterial grafts in nine human cases. Surg Gynecol Obstet. 1949;88:68–71.

    Google Scholar 

  43. Guido S, Tranquillo RT. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J Cell Sci. 1993;105(Pt 2):317–31.

    PubMed  Google Scholar 

  44. Gulbins H et al. Implantation of an autologously endothelialized homograft. J Thorac Cardiovasc Surg. 2003;126: 890–1.

    PubMed  Google Scholar 

  45. Hall HG, Farson DA, Bissell MJ. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci U S A. 1982;79: 4672–6.

    CAS  PubMed  Google Scholar 

  46. Hill JM et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol. 2005;46:1643–8.

    CAS  PubMed  Google Scholar 

  47. Hoerstrup SP et al. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 2000;6:75–9.

    CAS  PubMed  Google Scholar 

  48. Hubbell JA et al. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (N Y). 1991;9(6):568–72.

    CAS  Google Scholar 

  49. Hufnagel CA. Preserved homologous arterial transplants. Bull Am Coll Surg. 1947;32:231.

    Google Scholar 

  50. Huynh T et al. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol. 1999;17(11):1083–6.

    CAS  PubMed  Google Scholar 

  51. Isomatsu Y et al. Extracardiac total cavopulmonary connection using a tissue-engineered graft. J Thorac Cardiovasc Surg. 2003;126:1958–62.

    PubMed  Google Scholar 

  52. Kang HJ et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilized with granulocyte-colony stimulating factor on left ventricular systolic function an drestenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004; 363(9411):751–6.

    CAS  PubMed  Google Scholar 

  53. Kehat I et al. Functional integration of human embryonic stem cell derived cardiomyocytes with preexisting cardiac tissue: Implication for myocardial repair. Circulation. 2001;104(Suppl II):618.

    Google Scholar 

  54. Kehat I et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407–14.

    CAS  PubMed  Google Scholar 

  55. Kofidis T et al. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg. 2002;124: 63–9.

    CAS  PubMed  Google Scholar 

  56. Kofidis T et al. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant. 2005;24:737–44.

    PubMed  Google Scholar 

  57. Kolodney MS, Elson EL. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J Biol Chem. 1993;268:23850–5.

    CAS  PubMed  Google Scholar 

  58. Korecky B, Hai CM, Rakusan K. Functional capillary density in normal and transplanted rat hearts. Can J Physiol Pharmacol. 1982;60:23–32.

    CAS  PubMed  Google Scholar 

  59. Kunlin J. Le traitement de lìschemie obliterante par la greffe veineuse longue. Arch Mal de Couer. 1949;42:371–2.

    Google Scholar 

  60. Kuo MD et al. ARRS President’s Award. The potential of in vivo vascular tissue engineering for the treatment of vascular thrombosis: a preliminary report. American Roentgen Ray Society. AJR Am J Roentgenol. 1998;171(3):553–8.

    CAS  PubMed  Google Scholar 

  61. Lachapelle K, Graham AM, Symes JF. Antibacterial activity, antibiotic retention, and infection resistance of a rifampin-impregnated gelatin-sealed Dacron graft. J Vasc Surg. 1994;19(4):675–82.

    CAS  PubMed  Google Scholar 

  62. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260: 910–26.

    Google Scholar 

  63. Laube HR et al. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thoracic Cardiovasc Surg. 2000; 120:134–41.

    CAS  Google Scholar 

  64. Leor J et al. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation. 2000;102: III56–61.

    CAS  PubMed  Google Scholar 

  65. L’Heureux N et al. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12(1):47–56.

    PubMed  Google Scholar 

  66. L’Heureux N et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12:361–5.

    PubMed  Google Scholar 

  67. Li RK et al. Survival and function of bioengineered cardiac grafts. Circulation. 1999;100(100):II63–9.

    CAS  PubMed  Google Scholar 

  68. Linton RR, Darling RC. Autogenous saphenous vein bypass grafts in femoropopliteal obliterative arterial disease. Surgery. 1962;51:62–73.

    CAS  PubMed  Google Scholar 

  69. Makino S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697–705.

    CAS  PubMed  Google Scholar 

  70. McDonald TF, Sachs HG, DeHaan RL. Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells, and aggregates. Science. 1972;176:1248–50.

    CAS  PubMed  Google Scholar 

  71. Menasche P et al. Myoblast transplantation for heart failure. Lancet. 2001;357:279–80.

    CAS  PubMed  Google Scholar 

  72. Menasche P et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078–83.

    PubMed  Google Scholar 

  73. Miller JH et al. Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg. 1984;54(3): 283–5.

    CAS  PubMed  Google Scholar 

  74. Miwa H, Matsuda T. An integrated approach to the design and engineering of hybrid arterial prostheses. J Vasc Surg. 1994;19(4):658–67.

    CAS  PubMed  Google Scholar 

  75. Moscona AA. Tissues from dissociated cells. Contrib Embryol Carnegie Inst. 1959;200:132–4.

    CAS  Google Scholar 

  76. Moss AJ, et al.; Multicenter Automatic Defibrillator Implantation Trial II Investigators. N Engl J Med. 2002;346: 877–83.

    Google Scholar 

  77. Moss AJ et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    PubMed  Google Scholar 

  78. Muller-Ehmsen J et al. Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation. 2002;105:1720–6.

    PubMed  Google Scholar 

  79. Mummery C et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107:2733–40.

    CAS  PubMed  Google Scholar 

  80. Murphy JB. Resection of arteries and veins injured in continuity – end-to-end suture: experimental results and clinical research. Med Res. 1897;31:73–88.

    Google Scholar 

  81. Murugesan G et al. Integrin-dependent interaction of human vascular endothelial cells on biomimetic peptide surfactant polymers. Cell Commun Adhes. 2002;9(2):59–73.

    CAS  PubMed  Google Scholar 

  82. Nerem RM. Tissue engineering in the USA. Med Biol Eng Comput. 1992;30(4):CE8–12.

    CAS  PubMed  Google Scholar 

  83. Niklason LE et al. Functional arteries grown in vitro. Science. 1999;284(5413):489–93.

    CAS  PubMed  Google Scholar 

  84. O’Brien MF et al. The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg. 1999;11: 194–200.

    PubMed  Google Scholar 

  85. Orlic D et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    CAS  PubMed  Google Scholar 

  86. Outdot J. La greffe vasculaire dans les thromboses du Carrefour aortique. Presse Med. 1951;59:234.

    Google Scholar 

  87. Outdot J, Beaconsfield P. Thromboses of the aortic bifurcation treated by resection and homograft replacement. Arch Surg. 1953;66:365–74.

    Google Scholar 

  88. Ozawa T et al. Tissue-engineered grafts matured in the right ventricular outflow tract. Cell Transplant. 2004;13: 169–77.

    PubMed  Google Scholar 

  89. Pavcnik D et al. Percutaneous bioprosthetic venous valve: a long-term study in sheep. J Vasc Surg. 2002;35:598–602.

    PubMed  Google Scholar 

  90. Radisic M et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A. 2004;101: 18129–34.

    CAS  PubMed  Google Scholar 

  91. Radisic M et al. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol. 2005;288:H1278–89.

    CAS  PubMed  Google Scholar 

  92. Rahlf G, Urban P, Bohle RM. Morphology of healing in vascular prostheses. Thorac Cardiovasc Surg. 1986;34: 43–8.

    CAS  PubMed  Google Scholar 

  93. Rakusan K et al. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overlaod hypertrophy. Circulation. 1992;86:38–46.

    CAS  PubMed  Google Scholar 

  94. Ratajska A, Ciszek B, Sowinska A. Embryonic development of coronary vasculature in rats: corrosion casting studies. Anat Rec Discov Mol Cell Evol Biol. 2003;270:109–16.

    Google Scholar 

  95. Rook MB et al. Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. Am J Physiol Cell Physiol. 1992;263:C959–77.

    CAS  Google Scholar 

  96. Rosenberg N. The bovine arterial graft and its several applications. Surg Gynecol Obstet. 1976;142(1):104–8.

    CAS  PubMed  Google Scholar 

  97. Rosenberg NG, Henderson J. The use of segmental arterial implants prepared by enzymatic modification of heterologous blood vessels. Surg Forum. 1956;6:242.

    PubMed  Google Scholar 

  98. Ross D. Homograft replacement of the aortic valve. Br J Surg. 1967;54:842–3.

    CAS  PubMed  Google Scholar 

  99. Sagnella S et al. Biometric surfactant polymers designed for shear-stable endothelialization on biomaterials. J Biomed Mater Res A. 2003;67(3):689–701.

    PubMed  Google Scholar 

  100. Sagnella S et al. Human endothelial cell interaction with biomimetic surfactant polymers containing peptide ligands from the heparin binding domain of fibronectin. Tissue Eng. 2005;11(1–2):226–36.

    CAS  PubMed  Google Scholar 

  101. Sauvage LR et al. Future directions in the development of arterial prostheses for small and medium caliber arteries. Surg Clin North Am. 1974;54(1):213–28.

    CAS  PubMed  Google Scholar 

  102. Schaner PJ et al. Decellularized veinas a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40:146–53.

    PubMed  Google Scholar 

  103. Scheinman MM. NASPE survey on catheter ablation. Pacing Clin Electrophysiol. 1995;18:1474–8.

    CAS  PubMed  Google Scholar 

  104. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.

    CAS  PubMed  Google Scholar 

  105. Schram G et al. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res. 2002;90:939–50.

    CAS  PubMed  Google Scholar 

  106. Seifalian AM et al. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs. 2002;26:307–20.

    PubMed  Google Scholar 

  107. Shimizu T et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90:e40.

    CAS  PubMed  Google Scholar 

  108. Shimizu T et al. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006;12:499–507.

    CAS  PubMed  Google Scholar 

  109. Shinoka T. Tissue engineered heart valves: autologous cell seeding on biodegradable polymer scaffold. Artif Organs. 2002;26:402–6.

    PubMed  Google Scholar 

  110. Shinoka T et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg. 1995;60:S513–6.

    CAS  PubMed  Google Scholar 

  111. Shinoka T, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 1998;115:536–45; discussion 545–6.

    Google Scholar 

  112. Shumaker HB, King H. The use of pliable tubes as aortic substitutes in man. Surg Gynecol Obstet. 1954;94:287–94.

    Google Scholar 

  113. Shum-Tim D et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg. 1999;68:2298–304.

    CAS  PubMed  Google Scholar 

  114. Siegman FA. Use of the venous cuff for graft anastomosis. Surg Gynecol Obstet. 1979;148(6):930.

    CAS  PubMed  Google Scholar 

  115. Simon P, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg. 2003;23:1002–6; discussion 1006.

    Google Scholar 

  116. Simpson DG et al. Modulation of cardiac myocyte phenitype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol. 1994;161:89–105.

    CAS  PubMed  Google Scholar 

  117. Skalak R, Fox C. Tissue engineering. In: Skalak R, Fox C, editors. Workshop on Tissue Engineering; 1988 Feb 26–29; Granlibakken, Lake Tahoe, CA. New York: Liss; 1988.

    Google Scholar 

  118. Sodian R et al. Early In vivo experience with tissue-engineered trileaflet heart valves. Circulation. 2000;102:III22–9.

    CAS  PubMed  Google Scholar 

  119. Souren JE et al. Factors controlling the rhythmic contraction of collagen gels by neonatal heart cells. In Vitro Cell Dev Biol. 1992;28a:199–204.

    CAS  PubMed  Google Scholar 

  120. Sparks CH. Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Ann Surg. 1973;177(3):293–300.

    CAS  PubMed  Google Scholar 

  121. Steinhoff G et al. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue. Circulation. 2000;102:III50–5.

    CAS  PubMed  Google Scholar 

  122. Sys SU et al. Endocardial endothelium in the avascular heart of the frog: morphology and role nitric oxide. J Exp Biol. 1997;200:3109–18.

    CAS  PubMed  Google Scholar 

  123. Szilagyi DE, McDonald RT, Smith RF. Biologic fate of human arterial homografts. Arch Surg. 1957;75:506–29.

    CAS  Google Scholar 

  124. Taylor RS et al. Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br J Surg. 1992;79(4):348–54.

    CAS  PubMed  Google Scholar 

  125. Taylor DA et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4:929–33.

    CAS  PubMed  Google Scholar 

  126. Teebken OE, Wilhelmi M, Haverich A. Tissue Engineering für Herzklappen und Gefäße. Chirurg. 2005;5:453–66.

    Google Scholar 

  127. Terracio L, Miller B, Borg TK. Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev Biol. 1988;24:53–8.

    CAS  PubMed  Google Scholar 

  128. Torbert J, Ronziere MC. Magnetic alignment of collagen during self-assembly. Biochem J. 1984;219:1057–9.

    Google Scholar 

  129. Tranquillo RT et al. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials. 1996;17:349–57.

    CAS  PubMed  Google Scholar 

  130. Tucker OP et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. Small intestine without mucosa as a growing vascular conduit: a porcine experimental study. J Thorac Cardiovasc Surg. 2002;124:1165–75.

    PubMed  Google Scholar 

  131. Tyrrell MR, Wolfe JH. New prosthetic venous collar anastomotic technique: combining the best of other procedures. Br J Surg. 1991;78(8):1016–7.

    CAS  PubMed  Google Scholar 

  132. Vacanti JP. Beyond transplantation. Third annual Samuel Jason Mixter lecture. Arch Surg. 1988;123:545–9.

    CAS  PubMed  Google Scholar 

  133. Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354 Suppl 1:SI32–4.

    CAS  PubMed  Google Scholar 

  134. Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol. 1988;24:166–74.

    CAS  PubMed  Google Scholar 

  135. Vandenburgh HH, Swasdison S, Karlisch P. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB. 1991;5:2860–7.

    CAS  Google Scholar 

  136. Vara DS et al. Cardiovascular tissue engineering: state of the art. Pathol Biol (Paris). 2005;53:599–612.

    Google Scholar 

  137. Vogt PR, et al. Explanted cryopreserved allografts: a morphological and immunohistochemical comparison between arterial allografts and allograft heart valves from infants and adults. Eur J Cardiothorac Surg. 1999;15: 639–44; discussion 644–5.

    Google Scholar 

  138. Voorhees AB, Jaretzki A, Blakemore AH. The use of tube constructed from Vinyon “n” cloth in bridging arterial defects. Ann Surg. 1952;135:332–6.

    PubMed  Google Scholar 

  139. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.

    CAS  PubMed  Google Scholar 

  140. Wilhelmi MH et al. Role of inflammation and ischemia after implantation of xenogeneic pulmonary valve conduits: histological evaluation after 6 to 12 months in sheep. Int J Artif Organs. 2003;26(5):411–20.

    CAS  PubMed  Google Scholar 

  141. Wilhelmi MH et al. Role of inflammation in allogeneic and xenogeneic heart valve degeneration: immunohistochemical evaluation of inflammatory endothelial cell activation. J Heart Valve Dis. 2003;12(4):520–6.

    PubMed  Google Scholar 

  142. Williams SK. Endothelial cell transplantation. Cell Transplant. 1995;4(4):401–10.

    CAS  PubMed  Google Scholar 

  143. Wilson GJ et al. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg. 1995;60:S353–8.

    CAS  PubMed  Google Scholar 

  144. Wollert KC et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141–8.

    PubMed  Google Scholar 

  145. Yoon YS et al. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation. 2004;109:3154–7.

    PubMed  Google Scholar 

  146. Zehr KJ et al. Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. J Thorac Cardiovasc Surg. 2005;130:1010–5.

    PubMed  Google Scholar 

  147. Zimmermann WH et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng. 2000;68:106–14.

    CAS  PubMed  Google Scholar 

  148. Zimmermann WH et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90:223–30.

    CAS  PubMed  Google Scholar 

  149. Zuk PA et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7: 211–28.

    CAS  PubMed  Google Scholar 

  150. Zund G et al. Tissue engineering: a new approach in cardiovascular surgery: seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg. 1998;13:160–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Haverich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Haverich, A., Wilhelmi, M. (2011). Heart and Cardiovascular Engineering. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_16

Download citation

Publish with us

Policies and ethics