Skip to main content

Optical Absorption and Structural Transformations in Arsenic Selenide Films

  • Chapter
  • First Online:
Metastable States in Amorphous Chalcogenide Semiconductors

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 128))

  • 610 Accesses

Abstract

Optical absorption has been studied as a function of composition and temperature for poorly investigated Se-rich As x Se1 − x noncrystalline alloys. The samples were thin amorphous films and bulk glasses. It was shown for the first time that the absorption above the fundamental (Urbach) edge follows the Tauc law. The only exception to this law is pure selenium, for which a linear dependence of absorption coefficient on photon energy holds. The Tauc law is valid over a substantial range of absorption.

Although several reviews have appeared on various properties and applications of chalcogenide glasses, there is no thorough study of local atomic structure and its modification for Se-rich amorphous As x Se1 − x (a-As x Se1 − x ). This chapter is concerned with this problem. Structural transformations are examined by Raman scattering measurements of amorphous Se-rich As x Se1 − x (0 ≤ x ≤ 0. 2) alloys. It is found that the molecular structure of amorphous Se (a-Se) on the scale of medium-range order differs from the structure of most inorganic glasses and may be placed between three-dimensional (3D) network glasses and polymeric ones. Further experiments show the existence of successive phases in laser-induced glass–crystalline transition with pronounced threshold behaviour. By comparing peak width, peak location and Raman intensity in the range of bond modes, it is derived that the changes occur non-monotonically with increasing As content. The composition-induced changes of the spectra are explained by crosslinking of Se chains. Under laser irradiation, the changes in the optical transmission, holographic recording properties and Raman spectra of a-As x Se1 − x films with 0 < x ≤ 0. 2 have been examined. The dependence of the transmissivity and diffraction efficiency on the irradiation energy density shows two qualitatively different regions. Below the energy density threshold E th only small changes in the local structure of the system can be detected. In the low-energy region, transient changes in transmissivity are observed. This behaviour may be explained qualitatively by associating such changes with alternation of deep defect states. Above E th, the changes were attributed to crystallisation transformation. The corresponding Raman spectra reveal transformation of the system from amorphous phase to the crystalline phase under laser irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Madan, M.P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic, Boston, MA 1988)

    Google Scholar 

  2. A. Feltz, Amorphous Inorganic Materials and Glasses (VCH, Weinheim, Germany 1993)

    Google Scholar 

  3. K. Tanaka, In Encyclopedia of Materials (Elsevier, Oxford 2001) p.1123

    Google Scholar 

  4. S.O. Kasap, In Handbook of Imaging Materials, 2nd ed., ed. by A.S. Diamond, D.S. Weiss (Marcel Dekker, New York 2002), p.329, and references therein

    Google Scholar 

  5. S.O. Kasap, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 11, 179 (2000)

    Article  CAS  Google Scholar 

  6. Z. Borisova, Glassy Semiconductors (Plenum, New York 1981)

    Google Scholar 

  7. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Naterials, 2nd edn. (Oxford University Press, Oxford 1979)

    Google Scholar 

  8. J. Schottmiller, M. Tabak, G. Lucovsky, A. Ward, J. Non-Cryst. Solids 4, 80 (1970)

    Article  CAS  Google Scholar 

  9. A.E. Owen, W.E. Spear, Phys. Chem. Glasses 17, 174 (1976)

    CAS  Google Scholar 

  10. V.I. Mikla, D.G. Semak, A.V. Mateleshko, A.R. Levkulich, Sov. Phys. Semicond. 21, 266 (1987)

    Google Scholar 

  11. V.I. Mikla, D.G. Semak, A.V. Mateleshko, A.R. Levkulich, Sov. Phys. Semicond. 23, 80 (1989)

    Google Scholar 

  12. K. Tanaka, Rev. Solid State Sci. 2/3, 644 (1990)

    Google Scholar 

  13. J. Dresner, G.B. Stringfellow, J. Phys. Chem. Solids 29, 303 (1968)

    Article  CAS  Google Scholar 

  14. J.P. De Neufville, In Optical Properties of Solids – New Developments, ed. by D.O. Seraphin (North-Holland, Amsterdam, 1975), p.437

    Google Scholar 

  15. H. Fritzsche, In Insulating and Semiconducting Glasses, ed. by P. Boolchand, Chap.10 (World Scientific, Singapore, 2000)

    Google Scholar 

  16. M. Cardona, Light Scattering in Solids, Springer Tracts in Modern Physics (Springer, Berlin, 1975)

    Google Scholar 

  17. R.J. Nemanich, G.A. Connell, T.M. Hayes, R.A. Street, Phys. Rev. B 18, 6900 (1978)

    Article  CAS  Google Scholar 

  18. V.I. Mikla, Ph.D. Thesis (Odessa State University, Odessa, 1984)

    Google Scholar 

  19. A.A. Baganich, V.I. Mikla, D.G. Semak, A.P. Sokolov, Phys. Status Solidi B166, 297 (1991)

    Article  CAS  Google Scholar 

  20. M. Gorman, S.A. Solin, Solid State Commun. 18, 1401 (1976)

    Article  CAS  Google Scholar 

  21. M.H. Brodsky, M. Cardona, J. Non-Cryst. Solids 31, 81 (1978)

    Article  CAS  Google Scholar 

  22. P.J. Carroll, J.S. Lannin, Solid State Commun. 40, 81 (1981)

    Article  CAS  Google Scholar 

  23. P.J. Carroll, J.S. Lannin, J. Non-Cryst. Solids 35/36, 1277 (1980)

    Google Scholar 

  24. J. Jakle, In Amorphous Solids: Low-Temperature Properties, ed. by W.A. Phillips (Springer, Berlin, 1981) p. 135

    Google Scholar 

  25. V.I. Mikla, Ph.D. Thesis, Institute of Solid State Physics (Academy of Sciences, Kiev, 1984)

    Google Scholar 

  26. V.K. Malinovsky, V.N. Novikov, A.P. Sokolov, Fiz. Khim. Stekla 15, 331 (1989)

    Google Scholar 

  27. V.K. Malinovsky, A.P. Sokolov, Solid State Commun. 57, 757 (1986)

    Article  Google Scholar 

  28. G. Lucovsky, J. Non-Cryst. Solids 97/98, 155 (1987)

    Google Scholar 

  29. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)

    Article  CAS  Google Scholar 

  30. V.M. Lyubin, Non-Silver Photographic Processes (Khimiyia, Leningrad 1984)

    Google Scholar 

  31. K. Tanaka, N. Odajima, Solid State Commun. 43, 961 (1982)

    Article  CAS  Google Scholar 

  32. R.T. Phillips, J. Non-Cryst. Solids 70, 359 (1985)

    Article  CAS  Google Scholar 

  33. V.A. Bagrynskii, V.K. Malinovsky, V.N. Novikov, L.M. Puschaeva, A.P. Sokolov, Fiz. Tverd. Tela 30, 2360 (1988)

    Google Scholar 

  34. T. Mori, S. Onari, T. Arai, J. Appl. Phys. 19, 1027 (1980)

    CAS  Google Scholar 

  35. S. Onari, K. Matsuishi, T. Arai, J. Non-Cryst. Solids 74, 57 (1985)

    Article  Google Scholar 

  36. J.C. Phillips, J. Non-Cryst. Solids 43, 37 (1981)

    Article  CAS  Google Scholar 

  37. M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983)

    Article  CAS  Google Scholar 

  38. K. Tanaka, Phys. Rev. B 39, 1270 (1989)

    Article  CAS  Google Scholar 

  39. T. Wagner, S.O. Kasap, Philos. Mag. B 74, 667 (1996)

    Article  CAS  Google Scholar 

  40. V.I. Mikla, J. Phys. Condens. Matter 9, 9209 (1997)

    Article  CAS  Google Scholar 

  41. V.L. Averianov, A.V. Kolobov, B.T. Kolomiets, V.M. Lyubin, Phys. Status Solidi. A 57, 81 (1980)

    Article  CAS  Google Scholar 

  42. K. Tanaka, A. Odajima, Solid State Commun. 43, 961 (1982)

    Article  CAS  Google Scholar 

  43. V.I. Mikla, D.G. Semak, A.V. Mateleshko, A.A. Baganich, Phys. Status Solidi. A 117, 241 (1990)

    Article  CAS  Google Scholar 

  44. P. Boolchand, M. Jin, D.I. Novita, S. Chakravarty, J. Raman Spectrosc. 38, 660 (2007)

    Article  CAS  Google Scholar 

  45. E. Ahn, G.A. Williams, P.C. Taylor, Phys. Rev. B 74, 174206 (2006)

    Article  Google Scholar 

  46. R. Zallen, M.L. Slade, A.T. Ward, Phys. Rev. B 3, 4257 (1971)

    Article  Google Scholar 

  47. M. Abkowitz, R.C. Enck, Phys. Rev. B 25, 2567 (1982)

    Article  CAS  Google Scholar 

  48. I. Abdulhalim, R. Besserman, Solid State Commun. 64, 951 (1987)

    Article  CAS  Google Scholar 

  49. H.M. Yang, W.Z. Wang, S.K. Min, J. Non-Cryst. Solids 80, 503 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor I. Mikla .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikla, V.I., Mikla, V.V. (2010). Optical Absorption and Structural Transformations in Arsenic Selenide Films. In: Metastable States in Amorphous Chalcogenide Semiconductors. Springer Series in Materials Science, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02745-1_3

Download citation

Publish with us

Policies and ethics