Skip to main content

Discovery of Spatial Relationships in Spatial Data

  • Chapter
  • First Online:
Knowledge Discovery in Spatial Data

Part of the book series: Advances in Spatial Science ((ADVSPATIAL))

Abstract

Study of relationships in space has been the core of geographical research. In the simplest case, we might be interested in their characterization by some simple indicators. Sometimes we might be interested in knowing how things co-vary in space. From the perspective of data mining, it is the discovery of spatial associations in data. Often time, we are interested in relationships in which the variation of one phenomenon can be explained by the variations of the other phenomena. In terms of data mining, we are looking for some kinds of causal relationships that might be expressed in functional forms. Statistics in general and spatial statistics in particular have been commonly employed in such studies (Cliff and Ord 1972; Anselin 1988; Cressie 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Anselin L, Griffith DA (1988) Do spatial effects really matter in regression analysis? Paper Reg Sci Assoc 65:11–34

    Article  Google Scholar 

  • Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23:112–131

    Article  Google Scholar 

  • Arbia G (1989) Spatial data configuration in statistical analysis of regional economic and related problems. Kluwer, Dordrecht

    Google Scholar 

  • Bao S, Henry M (1996) Heterogeneity issues in local measurements of spatial association. Geogr Syst 3:1–13

    Google Scholar 

  • Beniston M, Stephenson DB (2004) Extreme climate events and their evolution under changing climatic conditions. Global Planet Change 44:1–9

    Article  Google Scholar 

  • Bonsal BR, Zhang X, Vincent LA, Hogg WD (2001) Characteristic of daily and extreme temperatures over Canada. J Clim 14:1959–1976

    Article  Google Scholar 

  • Boots B, Getis A (1988) Point pattern analysis. Sage Publications, London

    Google Scholar 

  • Boots B, Tiefelsdorf M (2000) Global and local spatial autocorrelation in bounded regular tessellations. J Geogr Syst 2:319–348

    Article  Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton M (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28:281–298

    Article  Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton M (1999) Some notes on parametric significance test for geographically weighted regression. J Reg Sci 39(3):497–584

    Article  Google Scholar 

  • Brunsdon C (1995) Estimating probability surfaces for geographical point data: an adaptive kernel algorithm. Comput Geosci 21:877–894

    Article  Google Scholar 

  • Burridge P (1980) On the cliff-ord test for spatial correlation. J Roy Stat Soc B 42:107–108

    Google Scholar 

  • Casetti E (1972) Generating models by the expansion method: applications to geographical research. J Geogr Anal 4:81–91

    Article  Google Scholar 

  • Casetti E (1982) Drift analysis of regression analysis: an application to the investigation of fertility development relations. Modeling Simul 13:961–966

    Google Scholar 

  • Caudill SB, Acharya RN (1998) Maximum likelihood estimation of a mixture of normal regressions: starting values and singularities. Comm Stat Simulat 27(3):667–674

    Article  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatter-plots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting: methods, properties and computational algorithms. J Econom 37:87–114

    Article  Google Scholar 

  • Cliff AD, Ord JK (1972) Testing for spatial autocorrelation among regression residuals. Geogr Anal 4:267–284

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

  • Cordy CB, Griffith DA (1993) Efficiency of least squares estimators in the presence of spatial autocorrelation. Commun Stat Simul Comput 22:1161–1179

    Article  Google Scholar 

  • Costanzo CM, Hubert L, Golledge RG (1983) A higher moment for spatial statistics. Geogr Anal 15:347–351

    Article  Google Scholar 

  • Cressie NAC (1993) Statistical for spatial data. Wiley, New York

    Google Scholar 

  • Dacey MF (1960a) The spacing of river towns. Ann Assoc Am Geogr 50:59–61

    Article  Google Scholar 

  • Dave RN, Krishnapuram R (1997a) Robust clustering methods: a unified view. J IEEE Trans Fuzzy Syst 5:270–293

    Article  Google Scholar 

  • DeGaetano AT (1996) Recent trends in maximum and minimum temperature threshold exceedences in the northeastern United States. J Clim 9:1646–1660

    Article  Google Scholar 

  • DeGaetano AT, Allen RJ (2002) Trends in twentieth-century temperature extremes across the United States. J Clim 15:3188–3205

    Article  Google Scholar 

  • Foster SA, Gorr WL (1986) An adaptive filter for estimating spatially-varying parameters: application to modelling police hours spent in response to calls for service. Manag Sci 32:878–889

    Article  Google Scholar 

  • Fotheringham AS (1997) Trends in quantitative methods I: stressing the local. Prog Hum Geog 21:88–96

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C (1999) Local forms of spatial analysis. Geogr Anal 31:340–358

    Article  Google Scholar 

  • Fotheringham AS, Pitts TC (1995) Directional variation in distance-decay. Environ Plann A 27:715–729

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression – the Analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  • Fotheringham AS, Charlton M, Brunsdon C (1997a) Measuring spatial variations in relationships with geographically weighted regression. In: Fischer MM, Getis A (eds) Recent developments in spatial analysis. Springer, London, pp 60–82

    Google Scholar 

  • Fotheringham AS, Charlton M, Brunsdon C (1997b) Two techniques for exploring non-stationarity in geographical data. Geogr Syst 4:59–82

    Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145

    Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206

    Article  Google Scholar 

  • Gorr WL, Olligschlaeger AM (1994) Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling. Geogr Anal 26:67–87

    Article  Google Scholar 

  • Griffith DA (1988) Advanced spatial statistics. Kluwer, Dordrecht

    Google Scholar 

  • Heino R, Brazdil R, Forland E, Tuomenvirta H, Alexandersson H, Beniston M, Pfister C, Rebetez M, Rosenhagen G, Rosner S, Wibig J (1999) Progress in the study of climate extremes in northern and central Europe. Clim Change 42:151–181

    Article  Google Scholar 

  • Hepple LW (1998) Exact testing for spatial autocorrelation among regression residuals. Environ Plann A 30:85–109

    Article  Google Scholar 

  • Hocking RR (1996) Methods and applications of linear models. Wiley, New York

    Google Scholar 

  • Hsu CN, Knoblock CA (1995) Estimating the robustness of discovered knowledge. In: Proceedings of the first international conference on knowledge discovery and data mining. Canada, Aug. 20–21, pp. 156–161

    Google Scholar 

  • Huang Y, Leung Y (2002) Analysing regional industralisation in jiangsu province using geographically weighted regression. J Geogr Syst 4(2):233–249

    Article  Google Scholar 

  • Imhof JP (1961) Computing the distribution of quadratic forms in normal variables. Biometrika 48:419–426

    Google Scholar 

  • John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers In Proceedings of the 11th conference on uncertainty in artificial intelligence. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  • Jones JP III, Casetti E (1992) Applications of the expansion method. Routledge, London

    Google Scholar 

  • Kendall MG (1987) Kendall advanced theory of statistics, 5th edn. Charles Griffin, London

    Google Scholar 

  • Koerts J, Abrahamse API (1968) On the power of the BLUS procedure. J Am Stat Assoc 63:1227–1236

    Article  Google Scholar 

  • Krämer W, Donninger C (1987) Spatial autocorrelation among errors and the relative efficiency of OLS in the linear regression model. J Am Stat Assoc 82:577–579

    Article  Google Scholar 

  • Kulldorf M, Feuer E, Miller B, Freedman L (1997a) Breast cancer in Northeastern United States: a geographical analysis. Am J Epidemiol 146:161–170

    Google Scholar 

  • Leung Y, Ma JH, Zhang WX (2001b) A New method for mining regression classes in Large data sets. IEEE Trans Pattern Anal Mach Intell 23(1):5–21

    Article  Google Scholar 

  • Leung Y, Mei CL, Wang N (2008b) A semi-parametric spatially varying coefficient model and its local-linearity-based estimation: a generalization of the mixed GWR model (unpublished paper)

    Google Scholar 

  • Leung Y, Mei CL, Zhang WX (2000a) Statistical tests for spatial non-stationarity based on geographically weighted regression model. Environ Plann A 32:9–32

    Article  Google Scholar 

  • Leung Y, Mei CL, Zhang WX (2000b) Testing for spatial autocorrection among the residuals of the geographically weighted regression. Environ Plann A 32:871–890

    Article  Google Scholar 

  • Leung Y, Mei CL, Zhang WX (2003d) Statistical test for local patterns of spatial association. Environ Plann A 35:725–744

    Article  Google Scholar 

  • Leung Y, Zhang JS, Xu ZB (2000c) Clustering by scale-space filtering. IEEE Trans Pattern Anal Mach Intell 22(12):1396–1410

    Article  Google Scholar 

  • Leung Y, Zhang JS, Xu ZB (2000d) Clustering by scale-space filtering. IEEE Trans Pattern Anal Mach Intell 22:1396–1410

    Article  Google Scholar 

  • McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition. Wiley, New York

    Book  Google Scholar 

  • McLachlan GJ, Basford KE (1988) Mixture models: inference and applications to clustering. Marcel Dekker, New York

    Google Scholar 

  • Mei CL, He SY, Fang KT (2004) A note on the mixed geographically weighted regression model. J Reg Sci 44:143–157

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied Linear Regression Models, 4th edn. Irwin, Chicago

    Google Scholar 

  • Openshaw S (1993) Exploratory space-time-attribute pattern analysis. In: Fotheringham AS, Rogerson PA (eds) Spatial Analysis and GIS. Taylor and Francis, London, pp 147–163

    Google Scholar 

  • Openshaw S, Charlton M, Wymer C, Craft AW (1987) A mark I geographical analysis machine for the automated analysis of point data sets. Int J Geogr Inform Syst 1:359–377

    Article  Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics distributional issues and an application. Geogr Anal 27:286–306

    Article  Google Scholar 

  • Pearson ES (1959) Note on an approximation to the distribution of non-central χ2. Biometrika 46:364

    Article  Google Scholar 

  • Prieto L, Herrera RG, Díaz J, Hernández E, Teso T (2004) Minimum extreme temperatures over Peninsular Spain. Global Planet Change 44:19–71

    Article  Google Scholar 

  • Qian WH, Lin X (2004) Regional trends in recent temperature indices in China. Clim Res 27:119–134

    Article  Google Scholar 

  • Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2):195–239

    Article  Google Scholar 

  • Sokal RR, Oden NL, Thomson BA (1998) Local spatial autocorrelation in a biological model. Geogr Anal 30:331–354

    Article  Google Scholar 

  • Stewart CV (1995) MINPRAN: a new robust estimator for computer vision. IEEE Trans Pattern Anal Mach Intell 17(10):925–938

    Article  Google Scholar 

  • Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics, vol 1, 6th edn, Distribution theory. Edward Arnold, London

    Google Scholar 

  • Tiefelsdorf M (1998) Some practical applications of Moran’s I’s exact conditional distribution. Pap Reg Sci 77:101–129

    Article  Google Scholar 

  • Tiefelsdorf M (2000) Modelling spatial processes: the identification and analysis of spatial relationships in regression residuals by means of Moran’s I. Springer, Berlin

    Google Scholar 

  • Tiefelsdorf M, Boots B (1995) The exact distribution of Moran’s I. Environ Plann A 27:985–999

    Article  Google Scholar 

  • Tiefelsdorf M, Boots B (1997) A note on the extremities of local Moran’s \( {I_i} \)s and their impact on global Moran’s I i . Geogr Anal 29:248–257

    Article  Google Scholar 

  • Tinkler KJ (1971) Statistical analysis of tectonic patterns in areal volcanism: the Bunyaraguru volcanic field in Western Uganda. Math Geol 3:335–355

    Article  Google Scholar 

  • Titterington DM, Smith AFM, Makov UE (1987) Statistical analysis of finite mixture distributions. Wiley, New York

    Google Scholar 

  • Unwin A (1996) Exploratory spatial analysis and local statistics. Computation Stat 11:387–400

    Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London

    Google Scholar 

  • Wang N, Mei CL, Yan XD (2005) Analysis of spatial relationship between mean and extreme temperatures in China with geographically weighted regression technique (unpublished paper)

    Google Scholar 

  • Wang N, Mei CL, Yan XD (2008) Local linear estimation of spatially varying coefficient models: an improvement on the geographically weighted regression technique. Environ Plann A 40(4):986–1005

    Article  Google Scholar 

  • Wilhelm A, Steck R (1998) Exploring spatial data by using interactive graphics and local statistics. Statistician 47:423–430

    Google Scholar 

  • Yan Z, Yang C, Jones P (2001) Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai. Adv Atmos Sci 18:309–321

    Article  Google Scholar 

  • Zhai PM, Pan XH (2003) Trends in temperature extremes during 1951–1999 in China. Geophys Res Lett 30(17):1913

    Article  Google Scholar 

  • Zhai PM, Sun AJ, Ren FM, Liu XN, Gao B, Zhang Q (1999) Changes of climate extremes in China. Clim Change 42:203–218

    Article  Google Scholar 

  • Zhuang X, Huang Y, Zhao Y (1996) Gaussian mixture density modeling, decomposition, and applications. IEEE Trans Image Process 5(9):1293–1301

    Article  Google Scholar 

  • Zhuang X, Wang T, Zhang P (1992) A highly robust estimator through partially likehood function modeling and its application in computer vision. J IEEE Trans Pattern Anal Mach Intell 14:19–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee Leung .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leung, Y. (2010). Discovery of Spatial Relationships in Spatial Data. In: Knowledge Discovery in Spatial Data. Advances in Spatial Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02664-5_5

Download citation

Publish with us

Policies and ethics