Skip to main content

Abstract

Behavioural research on honeybees has shown that bees are not the simple, hardwired creatures they were once believed to be. Bees display perceptual and ‘cognitive’ abilities that are rich, complex and flexible. In this chapter, we begin a review of these abilities with a brief introduction of the bee’s sensory equipment. Next, we describe several experimental approaches to bee behaviour. As this review is not intended to be exhaustive, we focus on behavioural experiments on free-flying honeybees. The studies described here investigate complex forms of learning and navigation, and mark important steps in understanding the processes underlying the bee’s remarkable behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107-119

    Article  PubMed  CAS  Google Scholar 

  • Blough DS (1959) Delayed matching in the pigeon. J Exp Anal Behav 2:151-160

    Article  PubMed  CAS  Google Scholar 

  • Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege H-C, Menzel R (2005) Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492:1-19

    Article  PubMed  Google Scholar 

  • Brannon EM, Terrace HS (2000) Representation of the numerosities 1-9 by rhesus macaques (Macaca mulatta). J Exp Psychol Anim Behav Process 26:31-49

    Article  PubMed  CAS  Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees – experiments and models. J Comp Physiol A 151:521-543

    Article  Google Scholar 

  • Cheng K (2005) Context cues eliminate retroactive interference effects in honeybees (Apis mellifera). J Exp Biol 208:1019-1024

    Article  PubMed  Google Scholar 

  • Chittka L, Geiger K (1995) Can honey bees count landmarks? Anim Behav 49:159-164

    Article  Google Scholar 

  • Chittka L, Tautz J (2003) The spectral input to honeybee visual odometry. J Exp Biol 206:2393-2397

    Article  PubMed  Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vision Res 34:1489-1508

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Geiger K, Kunze J (1995a) The influences of landmarks on distance estimation of honey bees. Anim Behav 50:23-31

    Article  Google Scholar 

  • Chittka L, Kunze J, Shipman C, Buchmann SL (1995b) The significance of landmarks for path integration in homing honeybee foragers. Naturwissenschaften 82:341-343

    Article  CAS  Google Scholar 

  • Chittka L, Gumbert A, Kunze J (1997) Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behav Ecol 8:239-249

    Article  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361-377

    Article  CAS  Google Scholar 

  • Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272-274

    Article  PubMed  CAS  Google Scholar 

  • Colborn M, Ahmad-Annuar A, Fauria K, Collett TS (1999) Contextual modulation of visuomotor associations in bumble-bees (Bombus terrestris). Proc R Soc Lond B 266:2413-2418

    Article  Google Scholar 

  • Collett TS, Baron J (1994) Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368:137-140

    Article  Google Scholar 

  • Collett TS, Cartwright BA (1983) Eidetic images in insects: their role in navigation. Trends Neurosci 6:101-105

    Article  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3:542-552

    Article  PubMed  CAS  Google Scholar 

  • Collett TS, Kelber A (1988) The retrieval of visuo-spatial memories by honeybees. J Comp Physiol A 163:145-150

    Article  PubMed  CAS  Google Scholar 

  • Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11:683-689

    Article  PubMed  Google Scholar 

  • Dale RH (1988) Spacial memory in pigeons on a four-arm radial maze. Can J Psychol 42:78-83

    Article  PubMed  CAS  Google Scholar 

  • Dale K, Harland DP, Manning-Jones A, Collett TS (2005) Weak and strong priming cues in bumblebee contextual learning. J Exp Psychol 208:65-74

    Google Scholar 

  • D’Amato MR, Salmon DP, Colombo M (1985) Extent and limits of the matching concept in monkeys (Cebus apella). J Exp Psychol Anim Behav Process 11:35-51

    Article  PubMed  Google Scholar 

  • Davis H (1984) Discrimination of the number three by a raccoon (Procyon lotor). Anim Learn Behav 12:409-413

    Article  Google Scholar 

  • Deisig N, Lachnit H, Giurfa M, Hellstern F (2001) Configural olfactory learning in honeybees: negative and positive patterning discrimination. Learn Mem 8:70-78

    Article  PubMed  CAS  Google Scholar 

  • Dyer AG, Neumeyer C, Chittka L (2005) Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. J Exp Biol 208:4709-4714

    Article  PubMed  Google Scholar 

  • Dyer AG, Rosa MGP, Reser DH (2008) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211:1180-1186

    Article  PubMed  Google Scholar 

  • Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance to a food source. Naturwissenschaften 82:38-40

    Article  CAS  Google Scholar 

  • Fauria K, Dale K, Colborn M, Collett TS (2002) Learning speed and contextual isolation in bumblebees. J Exp Biol 205:1009-1018

    PubMed  Google Scholar 

  • Fuchs S, Kralj J, Tautz J (2006) Radio frequency identification tags (RFID) for monitoring of worker bees infested with Varroa destructor or with Nosema apis at the hive entrance. Apidologie 37:643-645

    Google Scholar 

  • Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726-735

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801-824

    Article  Google Scholar 

  • Giurfa M, Malun D (2004) Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learn Mem 11:294-302

    Article  PubMed  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458-461

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Zhang SW, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930-933

    Article  PubMed  CAS  Google Scholar 

  • Gould JL (1987) Honey bees store learned flower-landing behaviour according to the time of day. Anim Behav 35:1579-1581

    Article  Google Scholar 

  • Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang SW (2009) Number-based visual generalisation in the honeybee. PLoS ONE 4:e4263, doi:10.1371/journal.pone.0004263

    Article  Google Scholar 

  • Hellstern F, Wüstenberg D, Hammer M (1995) Contextual learning in honeybees under laboratory conditions. In: Elsner N, Menzel R (eds) Learning and Memory. Proceedings of the 23rd Göttingen Neurobiology Conference. Vol. I. Thieme Verlag, Stuttgart, abstract 30

    Google Scholar 

  • Herman LM, Gordon JA (1974) Auditory delayed matching in the bottlenose dolphin. J Exp Anal Behav 21:19-26

    Article  PubMed  CAS  Google Scholar 

  • Horridge GA (1996) The honeybee (Apis mellifera) detects bilateral symmetry and discriminates its axis. J Insect Physiol 42:755-764

    Article  CAS  Google Scholar 

  • Horridge GA, Zhang SW (1995) Pattern vision in honeybees (Apis mellifera): flower-like patterns with no predominant orientation. J Insect Physiol 41:681-688

    Article  CAS  Google Scholar 

  • Horridge GA, Zhang SW, Lehrer M (1992) Bees can combine range and visual angle to estimate absolute size. Philos Trans R Soc Lond B 337:49-57

    Article  Google Scholar 

  • Hu S, Dilcher DL, Jarzen DM, Taylor DW (2008) Early steps of angiospermpollinator coevolution. Proc Natl Acad Sci USA 105:240-245

    Article  PubMed  CAS  Google Scholar 

  • Hunt S, Low J, Burns KC (2008) Adaptive numerical competency in a foodhoarding songbird. Proc R Soc Lond B 275:2373-2379

    Article  Google Scholar 

  • Johnson DL, Wenner AM (1966) A relationship between conditioning and communication in honey bees. Anim Behav 14:261-265

    Article  PubMed  CAS  Google Scholar 

  • Judd SPD, Collett TS (1998) Multiple stored views and landmark guidance in ants. Nature 392:710-714

    Article  CAS  Google Scholar 

  • Keller FS, Schoenfeld WN (1950) Principles of Psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Kilian A, Yaman S, von Fersen L, Güntürkün O (2003) A bottlenose dolphin discriminates visual stimuli differing in numerosity. Learni Behav 31:133-142

    Article  Google Scholar 

  • Konorski J (1959) A new method of physiological investigation of recent memory in animals. Bull Acad Pol Sci Biol 7:115-117

    Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang SW (1990) Visual edge detection in the honeybee and its chromatic properties. Proc R Soc Lond B 238:321-330

    Article  Google Scholar 

  • Letzkus P, Ribi WA, Wood JT, Zhu H, Zhang SW, Srinivasan MV (2006) Lateralization of olfaction in the honeybee Apis mellifera. Curr Biol 16:1471-1476

    Article  PubMed  CAS  Google Scholar 

  • Maleszka R, Helliwell P (2001) Effect of juvenile hormone on short-term olfactory memory in young honeybees (Apis mellifera). Horm Behav 40:403-408

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Blakers M (1976) Colour receptors in the bee eye – morphology and spectral sensitivity. J Comp Physiol A 108:11-13

    Article  Google Scholar 

  • Menzel R, Mueller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379-404

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hülse S, Plümpe T, Schaupp F, Schüttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102:3040-3045

    Article  PubMed  CAS  Google Scholar 

  • Pahl M, Zhu H, Pix W, Tautz J, Zhang SW (2007) Circadian timed episodic-like memory – a bee knows what to do when, and also where. J Exp Biol 210:3559-3567

    Article  PubMed  Google Scholar 

  • Pick CG, Yanai J (1983) Eight arm maze for mice. Int J Neurosci 21:63-66

    Article  PubMed  CAS  Google Scholar 

  • Prabhu C, Cheng K (2008a) One day is all it takes: circadian modulation of the retrieval of colour memories in honeybees. Behav Ecol Sociobiol 63:11-22

    Article  Google Scholar 

  • Prabhu C, Cheng K (2008b) Recency preference of odour memory retrieval in honeybees. Behav Ecol Sociobiol 63:23-32

    Article  Google Scholar 

  • Prete FR (2004) Complex Worlds from Simpler Nervous Systems. MIT Press, Cambridge/MA

    Google Scholar 

  • Ratnieks FLW, Wenseleers T (2008) Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol Evol 23:45-52

    Article  PubMed  Google Scholar 

  • Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004a) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371-4381

    Article  Google Scholar 

  • Reinhard J, Srinivasan MV, Zhang SW (2004b) Olfaction: scent-triggered navigation in honeybees. Nature 427:411

    Article  CAS  Google Scholar 

  • Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL (2007) Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol 210:3763-3770

    Article  PubMed  Google Scholar 

  • Roberts WA (1972) Short-term memory in pigeon: effects of repetition and spacing. J Exp Psychol 94:74-83

    Article  Google Scholar 

  • Ronacher B (1992) Pattern-recognition in honeybees: multidimensional-scaling reveals a city-block metric. Vision Res 32:1837-1843

    Article  PubMed  CAS  Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128-131

    Article  Google Scholar 

  • Seeley TD (1995) The Wisdom of the Hive. The Social Physiology of Honey Bee Colonies. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Shettleworth SJ (1998) Cognition, Evolution, and Behavior. Oxford University Press, New York

    Google Scholar 

  • Skorupski P, Chittka L (2006) Animal cognition: an insect’s sense of time? Curr Biol 16:R851-R853

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Lehrer M (1988) Spatial acuity of honeybee vision and its spectral properties. J Comp Physiol A 162:159-172

    Article  Google Scholar 

  • Srinivasan MV, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2513-2522

    PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW, Zhu H (1998) Honeybees link sights to smells. Nature 396:637-638

    Article  CAS  Google Scholar 

  • Srinivasan MV, Poteser M, Kral K (1999) Motion detection in insect orientation and navigation. Vision Res 39:2749-2766

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Zhang SW, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the ‘odometer’. Science 287:851-853

    Article  PubMed  CAS  Google Scholar 

  • Streit S, Bock F, Pirk CWW, Tautz J (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106:169-171

    Article  PubMed  Google Scholar 

  • Su S, Cai F, Si A, Zhang SW, Tautz J, Chen S (2008) East learns from West: Asiatic honeybees can understand dance language of European honeybees. PLoS ONE 3:e2365. doi:10.1371/journal.pone.0002365

    PubMed  Google Scholar 

  • Tautz J (2008) The Buzz about Bees: Biology of a Superorganism. Springer, Berlin

    Book  Google Scholar 

  • Troje NF, Huber L, Loidolt M, Aust U, Fieder M (1999) Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vision Res 39:353-366

    Article  PubMed  CAS  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim Cogn 6:105-112

    PubMed  Google Scholar 

  • van Hateren JH, Srinivasan MV, Wait PB (1990) Pattern recognition in bees: orientation discrimination. J Comp Physiol A 167:649-654

    Article  Google Scholar 

  • Vareschi E (1971) Duftunterscheidung bei der Honigbiene – Einzelzell-Ableitungen und Verhaltensreaktionen. Z Vergl Physiol 75:143-173

    Google Scholar 

  • von Frisch K (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Wasserman EA (1993) Comparative cognition: beginning the second century of the study of animal intelligence. Psychol Bull 113:211-228

    Article  Google Scholar 

  • Wehner R (2001) Polarization vision – a uniform sensory capacity? J Exp Biol 204:2589-2596

    PubMed  CAS  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579-588

    Article  CAS  Google Scholar 

  • Wehner R, Bleuler S, Nievergelt C, Shah D (1990) Bees navigate by using vectors and routes rather than maps. Naturwissenschaften 77:479-482

    Article  Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129-140

    PubMed  Google Scholar 

  • Williams RW, Herrup K (1988) The control of neuron number. Annu Rev Neurosci 11:423-453

    Article  PubMed  CAS  Google Scholar 

  • Witthöft W (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Zoomorphology 61:160-184

    Google Scholar 

  • Wray MK, Klein BA, Mattila HR, Seeley TD (2008) Honeybees do not reject dances for ‘implausible’ locations: reconsidering the evidence for cognitive maps in insects. Anim Behav 76:261-269

    Article  Google Scholar 

  • Zhang SW (2006) Learning of abstract concepts and rules by the honeybee. Int J Comp Psychol 19:318-341

    Google Scholar 

  • Zhang SW, Srinivasan MV (1994) Prior experience enhances pattern discrimination in insect vision. Nature 368:330-332

    Article  Google Scholar 

  • Zhang SW, Srinivasan MV (2004a) Exploration of cognitive capacity in honeybees: higher functions emerge from a small brain. In: Prete FR (ed) Complex Worlds from Simpler Nervous Systems. MIT Press, Cambridge/MA, pp 41-74

    Google Scholar 

  • Zhang SW, Srinivasan MV (2004b) Visual Perception and Cognition in Honeybees. In: Chalupa LM, Werner JS (eds) The Visual Neurosciences. MIT Press, Cambridge/MA, pp 1501-1513

    Google Scholar 

  • Zhang SW, Bartsch K, Srinivasan MV (1996) Maze learning by honeybees. Neurobiol Learn Mem 66:267-282

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Lehrer M, Srinivasan MV (1999) Honeybee memory: navigation by associative grouping and recall of visual stimuli. Neurobiol Learn Mem 72:180-201

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Srinivasan MV, Zhu H, Wong J (2004) Grouping of visual objects by honeybees. J Exp Biol 207:3289-3298

    Article  PubMed  Google Scholar 

  • Zhang SW, Bock F, Si A, Tautz J, Srinivasan MV (2005) Visual working memory in decision making by honey bees. Proc Natl Acad Sci USA 102:5250-5255

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Schwarz S, Pahl M, Zhu H, Tautz J (2006) Honeybee memory: a honeybee knows what to do and when. J Exp Biol 209:4420-4428

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pahl, M., Tautz, J., Zhang, S. (2010). Honeybee cognition. In: Kappeler, P. (eds) Animal Behaviour: Evolution and Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02624-9_4

Download citation

Publish with us

Policies and ethics