Skip to main content

Edge-Preserving Image Reconstruction with Wavelet-Domain Edge Continuation

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

  • 2197 Accesses

Abstract

The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than the results obtained without wavelet domain constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Machine Intell. 14(3), 367–383 (1992)

    Article  Google Scholar 

  2. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Processing 6(2), 298–311 (1997)

    Article  Google Scholar 

  3. Delaney, A.H., Bresler, Y.: Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography. IEEE Trans. Image Processing 7(2), 204–221 (1998)

    Article  Google Scholar 

  4. Nikolova, M., Idier, J., Mohammad-Djafari, A.: Inversion of large-support ill-posed linear operators using a piecewise Gaussian MRF. IEEE Trans. Image Processing 7(4), 571–585 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Robini, M.C., Rastello, T., Magnin, I.E.: Simulated annealing, acceleration techniques and image restoration. IEEE Trans. Image Processing 8(10), 1374–1387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Marroquin, J., Mitter, S., Poggio, T.: Probabilistic solution of ill-posed problems in computational vision. J. Amer. Statist. Assoc. 82(397), 76–89 (1987)

    Article  MATH  Google Scholar 

  7. Bertero, M., Poggio, T.A., Torre, V.: Ill-posed problems in early vision. Proc. IEEE 76(8), 869–889 (1988)

    Article  Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  9. Demoment, G.: Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Trans. Acoust., Speech, Signal Processing 37(12), 2024–2036 (1989)

    Article  Google Scholar 

  10. Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag. 9(1), 84–93 (1990)

    Article  Google Scholar 

  11. Lange, K.: Convergence of EM image reconstruction algorithms with Gibbs priors. IEEE Trans. Med. Imag. 9(4), 439–446 (1990)

    Article  Google Scholar 

  12. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Processing 2(3), 296–310 (1993)

    Article  Google Scholar 

  13. Stevenson, R.L., Schmitz, B.E., Delp, E.J.: Discontinuity preserving regularization of inverse visual problems. IEEE Trans. Syst., Man, Cybern. 24(3), 455–469 (1994)

    Article  Google Scholar 

  14. Li, S.Z.: On discontinuity-adaptive smoothness priors in computer vision. IEEE Trans. Pattern Anal. Machine Intell. 17(6), 576–586 (1995)

    Article  Google Scholar 

  15. Geman, S., McClure, D.E.: Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. 52, 5–21 (1987)

    MathSciNet  Google Scholar 

  16. Hebert, T., Leahy, R.: A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans. Med. Imag. 8(2), 194–202 (1989)

    Article  Google Scholar 

  17. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Processing 4(7), 932–946 (1995)

    Article  Google Scholar 

  18. Nikolova, M.: Markovian reconstruction using a GNC approach. IEEE Trans. Image Processing 8(9), 1204–1220 (1999)

    Article  Google Scholar 

  19. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. SIAM J. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bedini, L., Benvenuti, L., Salerno, E., Tonazzini, A.: A mixed-annealing algorithm for edge preserving image reconstruction using a limited number of projections. Signal Process 32(3), 397–408 (1993)

    Article  MATH  Google Scholar 

  21. Blanc-Féraud, L., Teboul, S., Aubert, G., Barlaud, M.: Nonlinear regularization using constrained edges in image reconstruction. In: Proc. IEEE Int. Conf. Image Processing, Lausanne, Switzerland, September 1996, vol. 2, pp. 449–452 (1996)

    Google Scholar 

  22. Idier, J.: Convex half-quadratic criteria and interacting auxiliary variables for image restoration. IEEE Trans. Image Processing 10(7), 1001–1009 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dobson, D., Santosa, F.: Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56(4), 1181–1198 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chang, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yaou, M.H., Chang, W.T.: Fast surface interpolation using multiresolution wavelet transform. IEEE Trans. Pattern Anal. Machine Intell. 16(7), 673–688 (1994)

    Article  Google Scholar 

  26. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Belge, M., Kilmer, M.E., Miller, E.L.: Efficient determination of multiple regularization parameters in a generalized L-curve framework. Inverse Problems 18(4), 1161–1183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramani, S., Blu, T., Unser, M.: Monte-Carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Processing 17(9), 1540–1554 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robini, M.C., Viverge, PJ., Zhu, YM., Magnin, I.E. (2009). Edge-Preserving Image Reconstruction with Wavelet-Domain Edge Continuation. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics