Skip to main content

Robust Principal Components for Hyperspectral Data Analysis

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

Abstract

Remote sensing data present peculiar features and characteristics that may make their statistical processing and analysis a difficult task. Among them, it can be mentioned the volume of data involved, the redundancy, the presence of unexpected values that arise mainly due to noisy pixels and background objects whose responses to the sensor are very different from those of their neighbours. Sometimes, the volume of data and number of variables involved is so large that any statistical analysis becomes unmanageable if data are not condensed in some way. A commonly used method to deal with this situation is Principal Component Analysis (PCA) based on classical statistics: sample mean and covariance matrices. The drawback in using sample covariance or correlation matrices as measures of variability is their high sensitivity to spurious values. In this work we analyse and evaluate the use of some Robust Principal Component techniques and make a comparison of Robust and Classical PCs performances when applied to satellite data provided by the hyperspectral sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrometer). We conclude that some robust approaches are the most reliable and precise when applied as a data reduction technique before performing supervised image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allende, H., Frery, A.C., Galbiati, J., Pizarro, L.: M-estimators with assymetric influence functions: the GA0 distribution case. Journal of Statistical Computation and Simulation 76(11), 941–956 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almiron, M.G., Almeida, E.S., Miranda, M.: The reliability of statistical functions in four software packages freely used in numerical computation. Brazilian Journal of Probability and Statistics, Special Issue on Statistical Image and Signal Processing (in press), http://www.imstat.org/bjps

  3. Andrews, D., Bickel, P., Hampel, F., Huber, P.K., Rogers, W., Tuckey, J.: Robust Estimates of Location: Survey and Advances. Princeton University Press, New Jersey (1972)

    MATH  Google Scholar 

  4. Aysal, T.C., Barner, K.E.: Generalized mean-median filtering for robust frequency-selective applications. IEEE Transactions on Signal Processing 55, 937–958 (2007)

    Article  MathSciNet  Google Scholar 

  5. Barret, H.H., Myers, K.J.: Foundations of Image Science. Pure and Applied Optics. Wiley Interscience, New Jersey (2004)

    Google Scholar 

  6. Boente, G., Fraiman, R.: Discussion of “Robust Principal Components for Functional Data” by Locantore et al. Test 8, 28–35 (1999)

    Google Scholar 

  7. Bustos, O.H., Frery, A.C.: Statistical Functions and Procedures in IDL 5.6 and 6.0. Computational Statistics and Data Analysis 50, 301–310 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bustos, O.H., Lucini, M.M., Frery, A.C.: M-estimators of Roughness and Scale for GAo -modelled SAR Imagery. EURASIP Journal on Applied Signal Processing 1, 105–114 (2002)

    Article  MATH  Google Scholar 

  9. Campbell, N.A.: Robust procedure in multivariate analysis I: Robust covariance estimators. Applied Statistics 29, 231–237 (1980)

    Article  MATH  Google Scholar 

  10. Chang, H., Yeung, D.Y.: Robust locally linear embedding. Pattern Recognition 39(6), 1053–1065 (2006)

    Article  MATH  Google Scholar 

  11. Chen, G., Qian, S.: Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal components analysis: Can. J. Remote Sensing 34(5), 447–454 (2008)

    Google Scholar 

  12. Croux, C., Haesbroeck, G.: Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies. Biometrika 87, 603–618 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Devlin, S.J., Gnanadesikan, R., Kettenring, J.R.: Robust Estimation of Dispersion Matrices and Principal Components. Journal of the American Statistical Association 76, 354–362 (1981)

    Article  MATH  Google Scholar 

  14. Hamza, B., Krim, H.: Image Denoising: A Nonlinear Robust Statistical Approach. IEEE Trans. Signal Processing 49(12), 3045–3054 (2001)

    Article  Google Scholar 

  15. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions. John Wiley and Sons, New York (1986)

    MATH  Google Scholar 

  16. Huber, P.J.: Robust Statistics. John Wiley and Sons, New York (1981)

    Book  MATH  Google Scholar 

  17. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  18. Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L.: Robust principal components for functional data. Test 8, 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lucini, M.M., Ruiz, V.F., Frery, A.C., Bustos, O.H.: Robust Classification of SAR Imagery. In: IEEE Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol. VI, pp. 557–561. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  20. Maronna, R.A.: Principal components and orthogonal regression based on robust scales. Technometrics 47(3), 264–273 (2005)

    Article  MathSciNet  Google Scholar 

  21. Maronna, R.A., Martin, D., Yohai, V.J.: Robust Statistics: Theory and Methods. John Wiley and Sons, Chichester (2006)

    Book  MATH  Google Scholar 

  22. Naga, R., Antille, G.: Stability of robust and non-robust principal components analysis. Computational Statistics and Data Analysis 10, 159–174 (1990)

    Google Scholar 

  23. Oh, H., Nychka, D.W., Lee, T.C.M.: The role of pseudo data for robust smoothing with application to wavelet regression. Biometrika 94(4), 893–904 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. Artech-House (1998)

    Google Scholar 

  25. Seber, G.A.F.: Multivariate observations. John Wiley and Sons, Chichester (1985)

    MATH  Google Scholar 

  26. Tyo, J.S., Konsolakis, A., Diersen, D.I., Olsen, R.C.: Principal-Components-Based Display Strategy for Spectral Analysis. IEEE Transactions on Geoscience and Remote Sensing 41(3), 708–718 (2003)

    Article  Google Scholar 

  27. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org ; ISBN: 3-900051-07-0

  28. AVIRIS, http://aviris.jpl.nasa.gov/html/aviris.freedata.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lucini, M.M., Frery, A.C. (2009). Robust Principal Components for Hyperspectral Data Analysis. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics