Skip to main content

On Comparison Theorem and its Applications to Finance

  • Chapter
  • First Online:
Optimality and Risk - Modern Trends in Mathematical Finance

Abstract

This paper studies a comparison theorem for solutions of stochastic differential equations and its generalization to the multi-dimensional case. We show, that even though the proof of the generalized theorem follows that of the one-dimensional comparison theorem, the multi-dimensional case requires a different condition on the drift coefficient, known in the theory of differential equations as Kamke-Wazewski condition. We also present several examples of possible applications to option price estimation in finance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassan, B., Çinlar, E., Scarsini, M.: Stochastic comparison of Itô processes. Stoch. Process. Appl. 45, 1–11 (1993)

    Article  MATH  Google Scholar 

  2. Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J. Financ. Econ. 3, 145–166 (1976)

    Article  Google Scholar 

  3. Ding, X., Wu, R.: A new proof for comparison theorems for stochastic differential inequalities with respect to semimartingales. Stoch. Process. Appl. 78, 155–171 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dittmann, I.: Fractional cointegration of voting and non-voting shares. Appl. Financ. Econ. 11(3), 321–332 (2001)

    Article  Google Scholar 

  5. Gal’chuk, L.I.: A comparison theorem for stochastic equations with integral with respect to martingales and random measures. Theory Probab. Appl. 27(3), 450–460 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gal’chuk, L.I., Davis, M.H.A.: A note on a comparison theorem for equations with different diffusions. Stochastics 6(2), 147–149 (1982)

    MathSciNet  Google Scholar 

  7. Geiß, C., Manthey, R.: Comparison theorems for stochastic differential equations in finite and infinite dimensions. Stoch. Process. Appl. 53, 23–35 (1994)

    Article  MATH  Google Scholar 

  8. Hajek, B.: Mean stochastic comparison of diffusions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 68, 315–329 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Henderson, V.: Price comparison results and superreplication: an application to passport options. Appl. Stoch. Models Bus. Ind. 16, 297–310 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jacod, J., Shiryayev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)

    MATH  Google Scholar 

  11. Melnikov, A.V.: On the theory of stochastic equations in components of semimartingales. Mat. Sb. 110(3), 414–427 (1979). In English: Sb. Math. 38(3), 381–394 (1981)

    MathSciNet  Google Scholar 

  12. Melnikov, A.V.: On solutions of stochastic equations with driving semimartingales. In: Proceedings of the Third European Young Statisticians Meeting, Catholic University, Leuven, pp. 120–124 (1983)

    Google Scholar 

  13. Melnikov, A.V.: Stochastic differential equations: singularity of coefficients, regression models and stochastic approximation. Russ. Math. Surv. 51(5), 43–136 (1996)

    Google Scholar 

  14. O’Brien Ci, L.: A new comparison theorem for solution of stochastic differential equations. Stochastics 3, 245–249 (1980)

    MathSciNet  Google Scholar 

  15. Peng, S., Zhu, X.: Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch. Process. Appl. 116, 370–380 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Situ, R.: Reflecting Stochastic Differential Equations with Jumps and Applications. Chapman Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  17. Skorokhod, A.V.: Studies in the Theory of Random Process (1961). Addison-Wesley, Reading (1965) (in English)

    Google Scholar 

  18. Vasicek, O.A.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977)

    Article  Google Scholar 

  19. Večeř, J., Xu, M.: The mean comparison theorem cannot be extended to the Poisson case. J. Appl. Probab. 41(4), 1199–1202 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yamada, T.: On comparison theorem for solutions of stochastic differential equations and its applications. J. Math. Kyoto Univ. 13, 497–512 (1973)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Melnikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krasin, V.Y., Melnikov, A.V. (2009). On Comparison Theorem and its Applications to Finance. In: Optimality and Risk - Modern Trends in Mathematical Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02608-9_8

Download citation

Publish with us

Policies and ethics